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Abstract 

Functional connectivity (FC) quantifies the temporal coherence of blood-oxygen-level-dependent 
(BOLD) signals across brain regions. Recently, the information-theoretic “complexome” framework 
has linked FC to coinciding ‘complexity drops’: transient moments in which regional BOLD signals 
simultaneously become regular. Here, we replicate this relationship in an independent dataset and 
extend the framework by (i) integrating it with signal cofluctuation analysis through edge-timeseries, 
(ii) extending the previous binary concept of simultaneous complexity drops to a continuous, 
threshold-free calculation, (iii) providing evidence of clinical relevance in the model disease of anti-
N-methyl-D-aspartate-receptor encephalitis, and (iv) deriving a novel measure of pairwise 
dissimilarity in local BOLD patterns. This ‘index of pattern incongruency’ (IPI) explains clinically 
relevant FC reductions and maps onto novel associations with cognition. These findings show that 
global FC is closely related to local patterns within underlying BOLD signals, strengthening the link 
between complexity dynamics and the brain’s functional organization as a large-scale network. 

 

Introduction 

Neural variability is a fundamental feature of human brain function (1, 2). Functional magnetic 
resonance imaging (fMRI) has been instrumental in advancing our understanding of these brain 
dynamics, both in health and across various clinical conditions. A central approach in human 
neuroimaging is the estimation of functional connectivity (FC) from blood-oxygen-level-dependent 
(BOLD) signals in resting-state fMRI (3). FC refers to the covariance structure of BOLD signals across 
the brain, where two brain regions are considered functionally connected if their signals show a high 
degree of temporal coherence – commonly estimated as the product-moment correlation of the two 
signal vectors. Within this framework, the brain is viewed as a large-scale functional network, in which 
gray matter regions represent the nodes of the network, and the FC estimates represent the edges 
between these nodes. 

While this approach has been widely adopted in neuroimaging research, efforts to establish a clear 
mechanistic link between the brain’s global network architecture and the local neural dynamics from 
which it emerges are comparatively recent. Elucidating this relationship is crucial, since the estimation 
of FC as temporal correlation represents a non-injective function. That is, although a pair of BOLD 
signals uniquely define a specific FC value, many other signals can produce the same value, even if 
their underlying signal properties fundamentally differ. In consequence, one can reliably infer FC from 
neural dynamics, but not vice versa: the neural dynamics of two individual regions cannot be uniquely 
reconstructed from their FC. Therefore, a complete understanding of the brain’s functional architecture 
requires a link between node-level activity and edge-level connectivity of the network. 

Recently, progress in this regard has been made by two complementary lines of research, which can 
be subsumed as an edge-centric and a node-centric account of brain activity, respectively.  

On the one hand, Esfahlani et al. (2020) introduced the so-called ‘edge-timeseries’ framework. This 
approach rests on a continuous measure of BOLD signal cofluctuation that captures bidirectional 
contributions to the FC of any given set of regions at the single time-point resolution. Empirical 
findings suggest that brief moments with highest amplitude of BOLD cofluctuation drive FC strength 
and relate to the canonical network architecture observed in resting-state brain activity (4). 

On the other hand, we recently presented the ‘complexome’ framework – an information-theoretic 
account of nodal activity, which is rooted in the encoding of symbolic patterns within local BOLD 
signals (1). Specifically, we used a time-resolved computation of weighted permutation entropy (WPE) 
(5) to estimate the complexity of regional BOLD signals from the distribution of these patterns over a 
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given moment in time. In this framework, a low-complexity BOLD signal is one where a dominant 
pattern explains most of the amplitude variance (i.e., the signal is more regular), whereas a high-
complexity signal features various symbolic patterns that split the amplitude information between them 
(i.e., the signal is more irregular). With this approach, we found that the brain operates in a default 
state of high complexity over most of the resting-state recording. However, this default activity is 
repeatedly interrupted by transient moments of increased signal regularity, which become visible as 
spontaneous ‘complexity drops’. Importantly, we previously showed that these complexity dynamics 
cannot be explained by signal covariance alone and are distinct from BOLD cofluctuations quantified 
with the original edge-timeseries approach (1, see fig. S6). Furthermore, we observed that the FC 
strength between any two brain regions is closely related to how often they engage in these complexity 
drops simultaneously (i.e., their ‘drop coincidence’). This finding establishes a systematic link between 
local complexity dynamics (node level) and interregional FC (edge level). 

Given their unique yet complementary contributions, integrating these frameworks is an important 
next step in understanding the link between local activity and global connectivity of the brain. By 
combining both approaches, we extend the ‘complexome’ framework to complexity cofluctuations, 
creating a unified model that integrates the global properties of FC, the complexity dynamics of 
regional BOLD signals, and the abstract patterns within those signals. This integration yields several 
methodological extensions, enhancing its applicability to an even wider range of research questions. 
Specifically, the original definition of drop coincidence rested on a binary drop threshold—the first 
percentile of empirically observed WPE values. However, this definition excludes moments in which 
two regions exhibit simultaneous decreases in complexity, but only one meets the drop criterion. 
Borrowing from the mathematical formulation of edge-timeseries, the concept of drop coincidence can 
be extended to a continuous, threshold-free calculation that also captures more subtle occasions of 
simultaneous complexity decrease. Moreover, this combined approach offers a more granular account 
of BOLD signal dynamics by considering the specific pattern distributions that underlie both FC and 
WPE. As such, it provides a powerful tool for studying hierarchical brain dynamics and for 
investigating their relevance for cognition and clinical symptoms. This is particularly important in 
neurological populations where FC analyses have been crucial in understanding pathological brain 
changes, e.g., associations with structural atrophy and network disruptions in conditions such as 
dementia (6), multiple sclerosis (7), and autoimmune encephalitis (8, 9). Yet, these FC alterations may 
result from many different signal fluctuations, making the neurobiological interpretation of such 
findings a challenge. Clarifying how local signal patterns relate to global connectivity is therefore a 
crucial step towards clinical translation and the generation of more mechanistic insights into 
neurological disease.  

Against this background, the aims of our study were to (i) leverage the recent development of edge-
timeseries and transfer it to complexity dynamics (‘complexity cofluctuations’), (ii) extend the 
previous binary concept of drop coincidence to a continuous, threshold-free calculation, (iii) derive a 
new measure of pairwise dissimilarity in local BOLD signal patterns, (iv) apply the complexome 
framework to an independent dataset and scanning protocol, and (v) test the sensitivity of the 
framework to clinically relevant FC changes. To this end, we study both healthy control participants 
(HC) and a large cohort of patients with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, 
the most common form of autoimmune encephalitis (10). Patients with NMDAR encephalitis exhibit 
a severe neuropsychiatric syndrome associated with altered brain dynamics in fMRI (11–13), 
specifically reduced FC in hippocampal connections with the default mode network (DMN) (9, 12, 14, 
15). Given the robustness and replicability of this finding, NMDAR encephalitis here serves as a 
‘model disease’ to explore if complexity dynamics can explain well-established and clinically relevant 
changes in FC. 
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Results 

Extending the ‘complexome’: complexity cofluctuations and pattern incongruency 

Time-resolved BOLD signal complexity was computed using a sliding window approach, as 
previously described in (1) and detailed in the Materials and Methods. This yielded regional 
complexity timeseries at the resolution of temporal windows (Fig. 1a). Subsequently, we adapted the 
recent edge-timeseries framework of Esfahlani et al. (2020) to compute the pairwise cofluctuation 
between these complexity timeseries (Fig. 1b, left). This approach allowed us to extend the binary 
concept of drop coincidence to a continuous, threshold-free metric: specifically, we take the root-sum-
square of the element-wise product between complexity timeseries at instances of simultaneous 
complexity decreases (i.e., downward cofluctuations) and summarize them as the area-under-the-curve 
(AUC) over time. A decrease in complexity was defined relative to a signal’s complexity value during 
the previous window. Thus, this measure captures both the magnitude (amplitude of cofluctuation) and 
duration (number of windows) of simultaneous complexity decrease (SCD) between a given pair of 
brain regions (Fig. 1b, right). Furthermore, we examined the individual BOLD signal patterns during 
these windows of SCD. Using the pattern frequency distributions produced during the calculation of 
WPE, we computed the Euclidean distance between a given pair of distributions in every window that 
showed a SCD. Then, we defined an index of pattern incongruency (IPI) as the mean distance over all 
these windows (Fig. 1c). IPI thus serves as a summary measure of pairwise BOLD signal complexity 
dynamics that relates underlying nodal activity patterns to the strength of edgewise functional 
coupling.  

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 8, 2025. ; https://doi.org/10.1101/2025.09.05.674447doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.05.674447


 

Figure 1. Computing time-resolved signal complexity and BOLD pattern incongruency 
(A) The step-by-step process for computing weighted permutation entropy (WPE). Preprocessed fMRI data was parcellated into 244 
regions of interest using the Human Brainnetome Atlas (16). The sliding window technique was used to segment regional timeseries 
into consecutive windows of 20 TRs (49.5s), with an overlap of 95%. Within each window, WPE was calculated using a rank-based 
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symbolic encoding framework depicted in the blue inset panel (see Materials and Methods). This resulted in a set of 244 complexity 
timeseries per participant at the resolution of windows. (B) Transferring edge-timeseries to complexity dynamics. A pair of exemplar 
complexity timeseries is shown on the top-left. The element-wise product between the two z-scored complexity timeseries results in a 
third timeseries that captures the magnitude and direction of complexity cofluctuations. Positive values here indicate windows in which 
the complexity timeseries fluctuate in the same direction, while negative values indicate windows with fluctuations in opposing 
directions. Purple circles indicate windows in which both complexity timeseries showed downward fluctuations, i.e., both underlying 
BOLD timeseries showed increased regularity compared to the previous window. The complexity cofluctuation timeseries was indexed 
to retain amplitudes corresponding to simultaneous downward cofluctuation. The magnitude of these downward cofluctuations was 
calculated as the root-sum-square (right) and summarized as the area-under-the-curve (AUC) over time, yielding a continuous, threshold-
free measure of simultaneous complexity decrease (SCD). (C) The step-by-step process for computing the novel index of pattern 
incongruency (IPI). The plots show the two BOLD timeseries underlying the exemplar complexity timeseries from panel (B) as well as 
the corresponding amplitude-weighted pattern frequency distributions. The Euclidean distance is taken between this pair of frequency 
distributions to compute the pattern dissimilarity over this temporal window. This process is repeated for every window in which 
simultaneous downward cofluctuations in complexity occurred. The IPI is then defined as the mean over all window-wise Euclidean 
distances between a pair of BOLD signals (right). Given the mathematical formulation of Euclidean distance (panel C), IPI can take on 
values between 0 and Ö2. An IPI of exactly 0 indicates that a pair of BOLD signals have identical pattern frequency distributions. 
Consequently, an IPI of exactly Ö2 indicates that a pair of BOLD signals have maximally distinct pattern frequency distributions.   

 

Functional connectivity is linked to complexity dynamics and BOLD signal patterns 

FC was predominantly positive across the brain in our normative sample of healthy controls (HC). The 
strongest FC was observed as intra-regional clusters, e.g., with the occipital cortex, pre-central gyrus, 
and thalamus. Weak anti-correlations were observed mainly between subcortical regions (thalamus, 
basal ganglia) and primary networks (visual, somatomotor), as well as with task-positive networks 
(dorsal and ventral attention, frontoparietal) (Fig. 2a, left).  

FC was strongly linked to AUC-SCD across the whole brain (ρ = 0.82, p < 0.0001), closely replicating 
findings from our original work (1). Similarly, we found that the spatial distribution of signal 
complexity across the brain was very similar between our in-house HC participants and those from the 
Human Connectome Project (HCP) Young Adults dataset analyzed in our previous work (r = 0.87, p 
< 0.0001; Fig. S1), despite differences in data acquisition protocols (17). Moreover, SCD were 
observed across all brain regions, such that every pair of brain regions had a non-zero AUC in every 
scan. Occipital and frontal regions, as well as the cingulate gyri, showed the greatest AUC-SCD (Fig. 
2a, middle). Even with this extended concept of complexity drop coincidence, we found a significant 
convergence between the spatial distribution of mean AUC-SCD in our in-house HC participants and 
the binary complexity drop coincidence in the HCP dataset (r = 0.65, p < 0.0001).  

Given that we closely replicated the strong link between FC and complexity dynamics in an 
independent dataset, we next hypothesized that FC should also be related to the BOLD pattern 
distributions that underlie the WPE calculation. With our IPI measure, we aimed to establish a link 
between the FC strength of a pair of brain regions and the frequency of particular patterns in the BOLD 
signals underlying that covariance. Indeed, we observed a strong anti-correlation between FC and IPI 
across the whole brain (ρ = -0.92, p ~ 0) – that is, two regions show high temporal covariance (i.e., 
high FC) if their signals contain very similar patterns (i.e., low IPI). The spatial distribution of IPI 
across the brain followed an inverse relationship with that of AUC-SCD (ρ = -0.76, p < 0.0001), 
showing the highest dissimilarities between subcortical regions (namely, the thalamus and basal 
ganglia) and regions of the somatomotor network as well as the orbital gyri, inferior frontal, and insular 
regions (Fig 2a, right).  

Furthermore, we examined the relationship between FC, AUC-SCD, and IPI over edges within and 
across canonical resting-state networks (RSNs). Regional signals were categorized into RSNs 
according to (18) and included the default mode network (DMN), dorsal (DAN) and ventral attention 
networks (VAN), the frontoparietal network (FPN), limbic network (LIM), somatomotor network 
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(SMN), and the visual network (VIS). Additionally, regions of the left and right hippocampus, 
amygdala, thalamus, and basal ganglia were included. Within-network connections refer to those edges 
between regions classified into the same network or subcortical region, while across-network 
connections refer to edges between two distinct networks or subcortical regions. As expected from the 
original complexome study (1), both FC and AUC-SCD were significantly higher in edges within 
networks compared to those between networks (FC: Z = 66.43, p < 0.0001; AUC-SCD: Z = 61.37, p 
< 0.0001). On the contrary, IPI was significantly higher in between-network connections (Z = -64.65, 
p < 0.0001) – that is, neural activity in regions belonging to different functional networks more often 
show incongruent BOLD patterns (Fig. 2b). The relationship between connectivity and AUC-SCD 
was consistently positive while the relationship between connectivity and IPI was inverse (Fig. 2b). 
Notably, while both measures were related to within-network FC to a similar degree (Δ|ρ| = 0.01), 
pattern incongruency was more strongly related to FC for between-network connections (Δ|ρ| = 0.13). 

 

IPI and AUC-SCD capture unique information about FC 

Using multiple regression and commonality analyses (19), we observed that the variance in FC strength 
across the brain is largely explained by IPI and AUC-SCD (Fig. 2c). Since IPI and AUC-SCD 
themselves are related, we found that the majority of variance in FC is explained by the proportion of 
variance shared by both variables. However, we also found that both IPI and AUC-SCD exhibit unique 
contributions to the explanation of FC, evidenced by the commonality coefficients displayed within 
the Venn diagrams (Fig. 2c). Interestingly, in the case of between-network connections, IPI alone 
contributes over 20% of the variance explained in FC, highlighting that this novel metric captures 
unique information about functional dynamics in parallel to AUC-SCD.  
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Figure 2. Associations between functional connectivity, AUC-SCD, and BOLD pattern incongruency in healthy participants.  
(A) (Left) Fisher R-to-Z transformed product-moment correlation coefficient. (Middle) Simultaneous complexity decrease (SCD) (Area-
under-the-curve, AUC). (Right) Index of pattern incongruency (IPI): Euclidean distance between pairwise BOLD pattern distributions. 
(B) (Left) FC and AUC-SCD show strong positive associations, especially along within-network connections. (Right) FC and IPI show 
strong inverse associations, especially along within-network connections. Test statistics were calculated using the Wilcoxon rank-sum 
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test. Correlations were computed using the non-parametric Spearman’s rho test. (C) Variance in FC across the whole brain as well as 
within-network and between-network edges is explained by IPI and AUC-SCD. Formulas and the overall coefficient of determination 
(R2) for each multiple regression model are shown for each analysis in the grey boxes. Venn diagrams show the proportion of explained 
variance in FC that is shared between IPI and AUC-SCD (center, brown), unique to IPI (top, green), and unique to AUC-SCD (left, 
blue). Unique and shared proportions of variance were calculated using commonality analysis to calculate commonality coefficients 
according to (19). The bottom scatter plots show the individual simple linear regression (SLR) models that were also used in commonality 
analyses. Color maps of the scatter plots correspond to the second independent variable not included in the individual SLR models. WB: 
whole-brain; WN: within-network; BN: between-network. 

 

In sum, the link between FC and complexity dynamics closely replicates in an independent dataset 
with a different scanning protocol: regions with high FC more often engage in simultaneous decreases 
in complexity (AUC-SCD), and this AUC-SCD strongly distinguishes connections within the same 
functional network from those across different functional networks. Moreover, extending the 
framework to account for pattern congruency yielded significant additional information: regions show 
high FC if the underlying BOLD signals contain similar symbolic patterns (i.e. low IPI). This approach 
tracked global FC even more strongly, which was mostly driven by connections between canonical 
resting-state networks. Given these strong links in the healthy brain, we next asked if this relationship 
would also hold in patients with well-established FC alterations.  

 

Clinical application 

Overall, patients with NMDAR encephalitis showed very similar associations between FC, AUC-SCD 
and IPI (Fig. 3): brain regions with high FC tend to show complexity decreases at the same time. 
Furthermore, in these moments of SCD (i.e., both BOLD signals are more regular), the signal patterns 
in both regions are similar to one another (i.e., low IPI). Furthermore, IPI and AUC-SCD captured 
both shared and unique proportions of variance in FC. Patients also exhibited stronger associations 
between brain measures in within-network edges compared to those between networks. 

 

Figure 3. Associations between functional connectivity, AUC-SCD, and BOLD pattern incongruency in patients with NMDAR 
encephalitis. Patients exhibit very similar relationships across global brain metrics compared to healthy participants. (A) FC and AUC-
SCD show strong positive associations, especially along within-network connections. (B) FC and IPI show strong inverse associations, 
especially along within-network connections. Test statistics were calculated using the Wilcoxon rank-sum Z-test. Correlations were 
computed using the non-parametric Spearman’s rho test. 
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These findings demonstrate a consistent relationship between FC, AUC-SCD, and BOLD IPI –both in 
normative data and in a clinical sample. Therefore, we next studied if disease-related changes in FC 
could be equally well explained by complexity dynamics. 

 

Hippocampal connectivity alterations in patients with NMDAR encephalitis  

Previous studies have consistently observed FC reductions of the hippocampus in patients with 
NMDAR encephalitis (9, 11, 14). Therefore, we aimed to (i) replicate these hippocampal FC changes 
and (ii) investigate to which extent these changes could be explained by the pattern incongruency of 
the underlying BOLD signals.  

Hippocampal functional connectivity analysis confirmed reduced connectivity in patients with 
NMDAR encephalitis, specifically between bilateral hippocampi and several regions of the default 
mode network (DMN), including the medial prefrontal cortex (mPFC), orbital gyri, and anterior and 
posterior cingulate gyri (Fig. 4a, left). Patients also exhibited reduced FC between the bilateral 
hippocampi and the thalamus (Table S1). There were no hippocampal connections in which patients 
showed increased FC compared to HC. 

Interestingly, in edges where patients showed reduced FC, we did not find significant differences in 
AUC-SCD compared to HC after correcting for multiple comparisons. Accordingly, patients with 
NMDAR encephalitis and HC exhibited similar levels of AUC-SCD in hippocampal edges, despite 
relatively strong reductions in hippocampal FC. Additionally, correlation analyses between group-
average FC and AUC-SCD in these specific edges revealed even stronger associations in patients 
(ρL.hipp. = 0.71, PL.hipp. = 0.013; ρR.hipp. = 0.78, PR.hipp. < 0.001) than HCs (ρL.hipp. = 0.52, PL.hipp. = 0.084; 
ρR.hipp. = 0.62, PR.hipp. = 0.013). Given the strong positive relationship between FC and AUC-SCD seen 
both in HC and patients with NMDAR encephalitis across the whole brain (Figs. 2-3), we hypothesized 
that this finding may be explained by a diversification of the underlying BOLD signal patterns in 
patients.  

Indeed, patients consistently showed increased IPI in the hippocampal edges with reduced FC 
compared to HC. This effect showed a slight lateralization towards the left hippocampus, where 8 of 
12 edges with reduced FC showed significantly increased IPI in patients. In connections with the right 
hippocampus, the effect retained significance in 3 out of 16 edges after adjustment for multiple 
comparisons. Overall, connections with the most incongruent BOLD patterns involved the hippocampi 
bilaterally and the left and right thalamus, left cingulate gyrus, and right orbital gyrus (Table S2; Fig. 
4a, right). We also performed correlation analyses between group-average FC and IPI in hippocampal 
edges with significant FC reductions. This revealed a strong inverse relationship between FC and IPI 
in both patients (ρL.hipp. = -0.92, PL.hipp. < 0.0001; ρR.hipp. = -0.95, PR.hipp. < 0.0001) and HCs (ρL.hipp. = -
0.87, pL.hipp. < 0.001; ρR.hipp. = -0.78, pR.hipp. < 0.001) (Fig. 4b). Moreover, we also observed a general 
relationship between lower FC in patients and lower AUC-SCD (left) as well as increased IPI (right) 
across all hippocampal edges – even in connections where between-group differences were limited to 
statistical tendency (Fig. 4c).  
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Figure 4. Hippocampal FC reductions in NMDAR encephalitis are linked to BOLD pattern incongruency.  
(A) Patients with NMDAR encephalitis showed reduced FC between the hippocampus and several DMN structures, including medial 
prefrontal and cingulate regions. While patients and controls showed similar levels of AUC-SCD in these edges, patients exhibited more 
incongruent BOLD signal patterns. (B) Correlation analyses between group-averaged functional measures. In hippocampal edges with 
reduced FC in patients, both HCs and patients have positive associations between FC and AUC-SCD and negative associations between 
FC and IPI. (C) Spearman’s rho correlation tests show that group-level alterations in FC are linked to complexity decreases (left) and 
IPI (right) across hippocampal connections.  

 

Whole-brain FC reductions in NMDAR encephalitis are explained by BOLD pattern 
incongruency  

While hippocampal FC reductions are a hallmark of NMDAR encephalitis, other FC changes have 
also been reported (11, 14). Therefore, we extended the above approach to exploratory whole-brain 
(Fig. 5a) and network-level analyses (Fig. 5b). We observed significantly reduced FC that was 
predominantly localized to connections with deep grey matter structures. Specifically, connections of 
the thalamus were consistently affected in patients, with the strongest FC reductions between the 
thalamus and nucleus accumbens and orbital gyrus. In whole-brain analyses, patients exhibited several 
reductions in thalamic FC that were even stronger than those seen in analyses limited only to the 
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hippocampus. These decreases in FC were paralleled by significant increases in IPI in patients, 
predominantly in connections between basal ganglia, cingulate gyri, and frontal regions of the DMN 
and FPN (Fig. 5a).  

To test the clustering of effects on the network level, we furthermore compared the network-averaged 
distributions of FC, IPI, and AUC-SCD between groups. In line with the above findings on 
hippocampal connectivity, patients consistently showed widespread reductions in FC and increases in 
IPI (Fig 5b). Specifically, the strongest FC reductions were found between the thalamus and the DMN 
(Z = 9.01, p < 0.0001), limbic network (Z = 8.80, p < 0.0001), and FPN (Z = 7.23, p < 0.0001), 
respectively. The strongest effects of increased IPI in patients were seen between the visual network 
and the VAN (Z = -12.39, p < 0.0001), the SMN (Z = -12.20, p < 0.0001), and the basal ganglia (Z = 
-10.94, p < 0.0001). IPI increases were also pronounced between thalamic connections with the FPN 
(Z = -9.33, p < 0.0001), DMN (Z = -9.01, p < 0.0001), and limbic network (Z = -8.53, p < 0.0001).  

In terms of AUC-SCD, patients showed both increases and decreases compared to healthy participants. 
The strongest decreases were seen between the SMN and thalamus (Z = 8.76, p < 0.0001) and basal 
ganglia (Z = 7.72, p < 0.0001). Increases in AUC-SCD were found in connections between the visual 
network and hippocampus (Z = -3.16, p = 0.006) as well as between the limbic network and DAN (Z 
= -3.05, p = 0.008). Importantly, both whole-brain and network-level analyses confirmed the 
relationship between FC and complexity dynamics seen above in hippocampal analyses—lower FC 
was associated with higher IPI and lower AUC-SCD in patients, even when individual comparisons to 
HC were limited to statistical tendency (Fig. 5c).  
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Figure 5. Whole-brain and network-specific FC reductions are linked to altered AUC-SCD and incongruent BOLD patterns. 
(A) Patients show widespread reductions in FC and increases in IPI. FDR-correction was computed over all edges. Nodes are color-
coded according to RSN or subcortical region. (B) Network-wise analyses show a consistent pattern of reduced FC and increased IPI. 
Cells of the matrices map the Wilcoxon rank-sum Z-statistic. Greyed-out cells correspond to comparisons that did not survive FDR 
adjustment. (C) Correlations between group-level test statistics of FC changes and alterations of AUC-SCD and IPI, respectively.  
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The normative relationship between AUC-SCD and IPI is disrupted in NMDAR encephalitis 

Against the background of these FC findings, we next aimed to characterize the normative relationship 
between IPI and AUC-SCD. Specifically, we asked if this relationship is disrupted in patients and if 
such alterations can be localized to particular brain areas.   

To this end, edgewise correlations were computed across HC to generate a spatial map of the 
relationship between IPI and AUC-SCD (Fig 6a, top). Across the brain, we observed predominantly 
inverse correlations between AUC-SCD and IPI, indicating that brain regions with more frequent or 
stronger simultaneous complexity decreases exhibit greater congruence in their BOLD signal patterns. 
In other words, when brain activity from two regions becomes more regular at the same time (i.e., a 
simultaneous complexity decrease), the symbolic patterns within those BOLD signals are more similar 
(i.e., low IPI). These inverse correlations were widespread across the brain, implicating connections 
from all networks and DGM regions. In contrast, we identified a much smaller subset of functional 
connections where IPI and AUC-SCD were positively correlated. Notably, a positive relationship in 
this context indicates that brain regions with more frequent or stronger simultaneous complexity 
decreases (i.e., high AUC-SCD), exhibit greater incongruence in their BOLD signal patterns (i.e., high 
IPI). Thus, when these regions exhibit complexity decreases at the same time, both underlying BOLD 
signals become more regular yet contain different distributions of symbolic patterns.  

Next, connections with significant correlations between IPI and AUC-SCD were aggregated by 
network (Fig 6b, top). Edges were categorized by the pairs of networks or DGM regions implicated in 
each, and the percentage of edges within and between each network that showed positive or negative 
IPI–AUC-SCD relationships was calculated. Visual inspection of network groupings revealed that 
within-network connections predominantly showed inverse correlations between IPI and AUC-SCD, 
while between-network connections showed a mixture of inverse and positive relationships. Edges 
with positive correlations accounted for up to 4% of all edges in any given network pair, while in some 
cases, inverse correlations were seen in 100% of edges. Interestingly, positive IPI–AUC-SCD 
correlations were primarily observed in connections from thalamic, BG, and limbic regions to 
networks involved in attention (VAN, DAN), cognition (FPN), and primary sensorimotor processing 
(SMN), while inverse correlations were seen across all networks and DGM regions. 

Similarly to HCs, patients with NMDAR encephalitis showed predominantly inverse correlations 
between IPI and AUC-SCD across the brain, as well a subset of connections where IPI and AUC-SCD 
were instead positively related (Fig. 6a, bottom). However, patients showed a higher number of edges 
with significant positive correlations (nPT = 169, nHC = 107) and a lower number of edges with 
significant inverse correlations between IPI and AUC-SCD (nPT = 10,820, nHC = 11,048). On the 
network level, patients showed a higher percentage of thalamic, BG, and limbic edges with positive 
IPI–AUC-SCD correlations compared to HCs. Notably, hippocampal connections with DMN, FPN, 
and DAN regions showed positive IPI–AUC-SCD correlations in patients, while no hippocampal 
connections had positive correlations in HCs (Fig. 6b, bottom).  

Between-group comparisons confirmed that patients with NMDAR encephalitis showed a widespread 
pattern of disrupted IPI–AUC-SCD associations, including both increases and decreases in correlation 
strength compared to HCs (Fig. 6c). When grouped by network, we observed that patient-specific 
alterations implicated nearly all pairs of networks and DGM structures (Fig. 6d). Furthermore, these 
disruptions were seen not only on the global scale (Z = -3.92, p < 0.0001), but also specifically across 
hippocampal connections, in which the distribution of IPI–AUC-SCD correlations was shifted 
positively in patients compared to HCs (Z = -1.99, p = 0.046; Fig. 6e, left).  
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Finally, we extended these analyses to consider the general case of edges in which patients showed an 
opposite effect direction in IPI–AUC-SCD relationships compared to HC. Given our aim to investigate 
patient-specific alterations, we furthermore studied the presence of ‘sign-flips’ in these associations 
relative to the HCs (Fig. 6e, right). Quantifying the binary occurrence of ‘sign-flips’ revealed that they 
tend to occur in connections with DGM structures and limbic regions, while cognitive and primary 
networks are less involved. For each network, we then computed the proportion of edges where sign-
flips occurred in patients and used chi-square goodness-of-fit tests to evaluate if the observed 
occurrence of sign-flips deviated from the expected values, based on the proportional frequency of 
network labels in our population of edges. These analyses indeed confirmed that sign-flips occurred 
more frequently in between-network compared to within-network connections (X2(1) = 468.39, p < 
0.0001), and that the occurrence of sign-flips is not proportionally distributed, but instead clusters by 
functional network (X2(10) = 485.82, p < 0.0001). 
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Figure 6. The normative relationship between IPI and AUC-SCD is disrupted in NMDAR encephalitis.  
(A) Whole-brain maps of IPI–AUC-SCD correlations in HCs (top) and patients (bottom). Left panels show all Spearman’s ρ coefficients 
and right panels show Spearman’s ρ coefficients significant at an alpha level of 0.05. Cells containing non-significant values are 
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displayed in white. (B) Percentage of involvement in IPI–AUC-SCD effects, aggregated by network for HCs (top) and patients (bottom). 
Each cell of each triangle depicts the percentage of network involvement, calculated as the number of edges with negative (left) or 
positive (right) effects divided by the total number of corresponding edges. Only edges with significant IPI–AUC-SCD correlations were 
counted. (C) Whole-brain map of between-group differences in IPI–AUC-SCD correlations. Test statistics were generated for each edge 
using the Fisher’s Z-test for comparing correlations from independent groups, as implemented in the R ‘cocor’ package. Left panel 
shows all Z-statistics and right panel shows those thesholded at an alpha level of 0.05. (D) Percentage of involvement in IPI–AUC-SCD 
group differences, aggregated by network or DGM structure. As above, each cell depicts the percentage of network involvement, and 
edges with significant differences between groups were counted. (E) (Left) Distributions of IPI–AUC-SCD correlation coefficients over 
all edges, over edges with significant effects, and over hippocampal edges. Wilcoxon rank sum tests were used to compare between 
groups; (Right) Generalized disruption of normative effects summarized as ‘sign-flips’ (i.e., edges in which patients had an opposite 
direction of IPI–AUC-SCD correlation than HCs). Left matrix shows the binary occurrence of sign-flips across the brain; Right bar 
graphs show the proportion of edges where sign-flips occurred over all within- vs. between-network connections, as well as in RSN-
specific connections.  

 

BOLD pattern congruency in NMDAR encephalitis is associated with cognition beyond 
functional connectivity 

Finally, we sought to explore how FC and our novel IPI measure respectively relate to cognitive 
performance in the patient cohort. To this end, we employed whole-brain correlation analyses to map 
associations between these brain measures and a composite cognition score across the domains of 
auditory-verbal memory, working memory, visual memory, executive functions, and attention (see 
Materials and Methods for details).  

As expected, FC was positively related to cognitive performance, with strongest effects in limbic 
connections with the basal ganglia (Fig. 7a, left). In line with this, we consistently observed inverse 
relationships between IPI and cognition (Fig. 7a, right). Accordingly, better cognitive performance 
was associated with more congruent BOLD patterns, and this effect was present in several functional 
systems, including connections between regions of the limbic network and thalamus, default mode, 
basal ganglia and frontoparietal network.  

Notably, comparisons between FC and IPI revealed that IPI maps additional correlations with 
cognition beyond those seen with FC (Fig. 7b). The intersection of both sets of associations contained 
four edges between the basal ganglia and limbic network. Additionally, we tested how the FC-
cognition associations and the IPI-cognition associations would change when controlling for the 
respective other brain measure in partial correlations (i.e., FC-cognition when controlling for IPI and 
IPI-cognition when controlling for FC). We then calculated the percent change in correlation strength 
between the raw correlation coefficients and those calculated when controlling for the added covariate. 
We found that controlling for IPI reduced FC-cognition relationships to a significantly greater extent 
than controlling for FC in IPI-cognition relationships (Z = -4.25, p<0.001; Fig. 7c).  

The strongest reductions were localized to basal ganglia and thalamic connections with the limbic 
network, where controlling for IPI reduced FC-cognition associations by 29-47%. Conversely, 
controlling for FC in IPI-cognition associations resulted in both increases and decreases in the strength 
of these associations. Increased effects after controlling for FC were not obviously clustered across the 
brain and ranged from 2-16%. Decreases due to controlling for FC-related variance were also 
widespread, with the strongest reductions seen in visual-DMN (46%) and basal ganglia-limbic 
connections (44%) (Fig. 7d).  
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Figure 7. BOLD pattern congruency in NMDAR encephalitis is associated with cognition beyond functional connectivity.  
(A) Network visualizations of edges showing significant relationships between FC and cognition (left) and IPI and cognition (right). 
Visualizations were made with the BrainNet Viewer Toolbox for MATLAB. Edge color maps the strength and direction of Spearman’s 
rho correlation coefficients. Nodes are color-coded according to RSN or subcortical structure. (B) Venn diagram showing the number 
of unique and shared edges between the FC-cognition associations (left) and IPI-cognition associations (right). (C) Density plots showing 
the relative change in correlation strength when controlling for the respective other brain metric, tested with the Wilcoxon rank sum test. 
(D) Network visualizations depicting the spatial specificity of relative change in partial correlations. Edge color maps the direction and 
magnitude of the change in correlation strength between FC-cognition associations (left) and IPI-cognition associations (right) when 
controlling for the respective other brain measure.  
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Discussion 

In this study, we build upon the recently developed ‘complexome’ framework to show that functional 
connectivity (FC) is closely linked to the congruency of symbolic patterns in the underlying BOLD 
signals. To this end, we (i) integrate complexity dynamics with recent developments on signal 
cofluctuation analysis through edge-timeseries, (ii) extend the previous binary concept of simultaneous 
complexity drops to a continuous, threshold-free calculation (i.e., AUC-SCD), (iii) derive a new 
measure of pairwise dissimilarity in local BOLD signal patterns — the ‘index of pattern incongruency’ 
(IPI), (iv) show that the link between complexity dynamics and functional brain organization closely 
replicates in an independent dataset with different scanning parameters, and (v) provide first evidence 
of clinical relevance of this framework in the model disease of anti-N-methyl-D-Aspartate receptor 
(NMDAR) encephalitis. Specifically, we show that IPI captures unique information about complexity 
dynamics in addition to simultaneous complexity decreases (AUC-SCD), explains clinically relevant 
FC reductions in this patient group, and maps onto novel associations with cognitive performance 
beyond functional connectivity. 

Theoretical advances 

The complexome framework was initially tested in the Human Connectome Project (HCP) Young 
Adults dataset, where we observed that resting-state brain activity is characterized by transient 
moments of high regularity in the BOLD signals, which become visible as spontaneous ‘complexity 
drops’. Importantly, we found that the FC strength between any two brain regions is closely related to 
how often they engage in these complexity drops at the same time (i.e., their ‘drop coincidence’). 
However, the definition of drop coincidence was based on a stringent binary drop threshold (the lower 
1% of empirically observed complexity values across the sample). Consequently, a region was 
considered to show a complexity drop whenever the corresponding WPE value was low enough to 
meet this threshold. Similarly, two brain regions were considered to drop simultaneously if both signals 
independently reached the drop threshold in the same temporal window. While this binary formulation 
enabled many key insights into the spatial distribution, temporal propagation, and network effects of 
complexity drops (1), this approach necessitates an arbitrary drop threshold and is agnostic to the 
magnitude of the simultaneous complexity drops.  

To overcome this binary definition, we here employed the recent mathematical framework of ‘edge-
timeseries’ (4) and transferred this approach to cofluctuations between complexity timeseries. Instead 
of BOLD signal cofluctuations at the resolution of single timepoints, we thus obtained complexity 
cofluctuations representing neural dynamics at the resolution of temporal windows. To remain in line 
with the conceptualization of complexity drops, we then considered the instances of simultaneous 
downward complexity cofluctuations. This enabled us to capture both the duration (number of 
windows) and the magnitude (amplitude of cofluctuation) of simultaneous complexity decreases 
(SCD) in a single scalar as the area-under-the-curve (AUC-SCD) over time. 

With this continuous SCD metric, we replicated a main finding from (1) in an independent dataset of 
healthy participants, confirming that AUC-SCD is strongly and positively related to FC strength. 
Importantly, this independent replication highlights that the relationship between FC and complexity 
dynamics is highly consistent across datasets, MRI machines, and scanning parameters.  

Additionally, the extensions of the ‘complexome’ framework derived here allowed us to examine not 
only the coincidence of complexity decreases, but also the internal structure of the BOLD signals 
during those moments. In other words, by combining continuous measures of SCD and pairwise 
pattern incongruency, we were able to ask not just when regions become more regular together—but 
how their signal patterns relate in those moments.  
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To establish a normative account of these signal dynamics, we first focused on healthy participants. 
We observed that when activity from distinct regions becomes more regular, i.e. when two brains 
regions show complexity decreases at the same time, their BOLD signals show similar symbolic 
patterns. This inverse relationship (with IPI) was widespread, clustering especially within canonical 
RSNs and DGM structures. However, in about 1% of edges, we saw the opposite: regions decreasing 
in complexity at the same time displayed different underlying patterns. These connections were most 
common between DGM, limbic, and DMN regions to other cortical networks. Notably, however, a 
simultaneous complexity decrease with congruent or incongruent symbolic patterns represents the 
same phenomenon in an information-theoretical sense. Our findings therefore support a principled 
functional interpretation of the observed complexity dynamics, in line with our previous work (1). 
Simultaneous complexity decreases may express the informational architecture underpinning the 
brain’s functional network organization, whereas BOLD pattern incongruency may reflect the 
information content that is transmitted across this architecture. Our findings suggest that in healthy 
brain function these two aspects co-occur, while this relationship appears disrupted in neurological 
disease. Future work should investigate whether, and under what conditions, BOLD pattern 
incongruency is actively transmitted across the brain’s functional networks.  

Clinical application 

The phenomenon of complexity drops has previously been shown to explain functional connectivity 
across the brain and was positively associated with cognitive and motor performance and negatively 
associated with age in healthy participants (1). Given this relationship, we sought to explain a well-
established set of functional brain alterations in a clinical dataset. Patients with NMDAR encephalitis 
therefore served as a novel clinical application of our information-theoretic framework due to the 
highly replicable FC alterations seen in this population. Specifically, reduced FC between the 
hippocampus and the DMN is a well-established functional signature of NMDAR encephalitis (9, 11, 
14) and was recently identified in murine models of the disease as well (20). Moreover, these functional 
changes are linked to reduced cognitive performance in NMDAR encephalitis, which persists for years 
after the acute stage of the disease (9, 21). The localization of these alterations is thought to be linked 
to the especially high density of NMDA receptors in the hippocampal formation (22). In line with 
these previous reports, we here corroborated reduced hippocampal FC in NMDAR encephalitis, 
primarily in connections with the DMN and the thalamus.  

Given the observed normative relationship between FC and AUC-SCD in the healthy brain, we 
hypothesized that these reductions in FC would be mirrored by parallel reductions in AUC-SCD. 
Interestingly, we found that patients and healthy participants showed similar levels of AUC-SCD 
among hippocampal connections. However, we previously found that the hippocampus was among 
those brain regions that engaged in complexity drops to a significantly lesser extent than other cortical 
areas (1). Therefore, we hypothesized that patients exhibit a shift in the symbolic patterns in the 
underlying BOLD signals that was not detected by complexity estimates alone. Indeed, we observed 
that hippocampal, whole-brain, and network-wise FC reductions in patients were systematically 
associated with increases in IPI. While some of these changes were also associated with AUC-SCD, 
effects tended to be even stronger for IPI. Relatedly, patients also showed widespread alterations in 
the association between IPI and AUC-SCD compared to healthy participants. While both groups had 
predominantly inverse correlations across the brain, patients with NMDAR encephalitis exhibited a 
positively skewed distribution of these correlations globally and had a higher percentage of edges with 
positive IPI–AUC-SCD correlations, especially in hippocampal and DGM connections. Accordingly, 
the normative IPI–AUC-SCD association seen in healthy individuals was disrupted in patients with 
NMDAR encephalitis, again underscoring the utility and clinical relevance of both measures. Besides 
these between-group effects, IPI also showed strong inverse associations with brain-wide FC within 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 8, 2025. ; https://doi.org/10.1101/2025.09.05.674447doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.05.674447


healthy participant and patient groups separately, suggesting a principled link between BOLD pattern 
congruency and BOLD signal covariance. 

In addition, we also observed that IPI identified novel brain-cognition relationships in our clinical 
population. Specifically, more congruent BOLD patterns in basal ganglia and thalamic connections 
with the limbic and default mode networks were associated with better cognitive performance in 
patients. IPI-cognition associations were consistently inverse, i.e. higher similarity of symbolic 
patterns in BOLD signals was associated with better cognitive performance. IPI also mapped more 
associations with cognition compared to FC, underscoring its sensitivity to cognitive performance. 
Furthermore, controlling for IPI in FC-cognition relationships significantly reduced the strength of 
these associations, while the inverse did not equivalently hold.   

Overall, these findings clearly support the view that NMDAR encephalitis is characterized by 
increased volatility of functional brain dynamics (12, 13), and that this volatility is rooted in altered 
complexity dynamics.  

 

Future directions 

Here, we limited FC analyses to static accounts of BOLD activity. However, the new continuous 
definition of SCD will facilitate future research into the moment-to-moment relationships between FC 
and complexity dynamics. Moreover, our study focused on group-level effects, but our framework 
naturally extends to the study of intra-individual differences. This is especially interesting in the 
context of precision neuroimaging datasets to explore the variability of complexity dynamics over days 
to weeks.  

Furthermore, the normative analyses in our study carry several immediate implications. One the one 
hand, future studies in lifespan datasets will be able to derive a normative account of complexity 
dynamics in human development. On the other hand, the framework is easily applicable to other 
clinical conditions as well, lending the opportunity to investigate disease-specific alterations in 
functional brain dynamics. The demonstrated sensitivity of IPI to elucidate associations between brain 
dynamics and cognitive symptoms that otherwise remain undetected suggests that this measure may 
be useful for investigations of other neuropsychiatric disorders as well. Future applications to other 
patient populations, for example those with complex neuropsychiatric symptoms (i.e., schizophrenia) 
or other autoimmune-mediated conditions (i.e., multiple sclerosis, LGI-1 encephalitis), would be 
especially interesting to evaluate the disease-specificity of the present findings. 

Overall, the present study provides an in-depth replication, theoretical extension, and one of the first 
clinical applications of the recently developed ‘complexome’ framework. We introduce a novel 
measure of BOLD pattern incongruency that is closely linked to FC and cognitive performance, and 
demonstrate that both complexity cofluctuations and BOLD pattern incongruency provide unique yet 
complementary insights into the dynamics of human brain activity. Taken together, these findings 
underscore the value of IPI as a novel and informative measure of BOLD signal dynamics, with 
relevance not only for advancing our normative understanding of brain organization, but also for 
identifying deviations in clinical populations. 
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Materials and Methods 

Participants and clinical assessment 

We studied a sample of 75 patients with anti-NMDA receptor (NMDAR) encephalitis and 75 age- and 
sex-matched healthy control participants (HCs). Patients were recruited from the Department of 
Neurology at Charité-Universitätsmedizin Berlin. Healthy control participants (HCs) were recruited 
using the Charité Intranet. Diagnosis of NMDAR encephalitis was based on clinical presentation and 
the detection of immunoglobulin G (IgG) NMDA receptor antibodies. Patients were in the post-acute 
stage of the disease with an average time since disease onset of 2.97 ± 2.48 years. The study was 
approved by the local ethics committee [EA1/206/10, EA1/095/12, EA1/105/16, EA4/011/19], and all 
participants gave written informed consent. 

For cognitive assessment, patients underwent a battery of standardized neuropsychological tests. A 
composite cognition score was calculated using data from patients with complete cognitive 
neuropsychological test scores. Out of 75 patients, 61 had complete data and were included in final 
brain-cognition correlations. We selected two scores from each of the following cognitive sub-
domains: auditory-verbal memory (Rey Auditory Verbal Learning Test summary and delayed recall), 
working memory (Digit Span Forward and Digit Span Backward), visual memory (Rey-Oesterreich 
Complex Figure immediate and delayed-recall), executive function (Stroop test, Go-No-Go test), and 
attention (Test of Attentional Performance divided attention auditory and divided attention visual). 
Scores that corresponded to reaction times were re-coded by multiplying by –1 to maintain the 
directionality of the composite score, such that higher scores represent better cognitive performance 
relative to the mean across all patients. For each of the 10 tests, a z-score was calculated over the 
patient scores. The mean was then taken over a patients’ 10 z-scores, resulting in a mean cognitive 
performance composite z-score for each patient. 

 
MRI data acquisition 

MRI data were acquired at the Berlin Center for Advanced Neuroimaging at Charité-
Universitätsmedizin Berlin, Germany, using a 20-channel head coil on a 3 T Trim Trio scanner 
(Siemens, Erlangen, Germany). For each participant, the following sequences were acquired for this 
study: a 10-minute resting-state-fMRI (rsfMRI) scan was collected using a repetition time (TR) of 
2250 ms (TE = 30 ms, 260 volumes, matrix size = 64 × 64, 37 axial slices, slice thickness = 3.4 mm, 
voxel size = 3.4 × 3.4 × 3.4 mm3), and a T1-weighted structural scan was acquired using a 
magnetization-prepared rapid gradient echo (MPRAGE) sequence (1 mm3 isotopic resolution, matrix 
size = 240 × 240, 176 slices). 

 
Resting-state fMRI preprocessing 

Prior to preprocessing, framewise displacement (FD) was calculated for each participant and assessed 
against a mean FD cutoff of 0.50mm (23). No participants had a mean FD greater than or equal to 
0.50mm. Preprocessing was performed using customized MATLAB scripts based on Parkes et al. (24) 
and included removal of the first 4 volumes of each participant’s rs-fMRI scan, slice-timing correction, 
detrending of BOLD timeseries, intensity normalization, and spatial smoothing by convolving with a 
6mm full width at half maximum Gaussian kernel. Motion correction was performed by regression of 
six realignment parameters, mean white matter and CSF signals. Bandpass filtering to retain 
frequencies between 0.01 and 0.1 Hz and demeaning were performed. The Human Brainnetome Atlas 
(16) was customized to combine lateral hippocampal regions of interest (ROIs) into one left and one 
right hippocampal ROI, resulting in 210 cortical and 34 subcortical ROIs in total. Timeseries were 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 8, 2025. ; https://doi.org/10.1101/2025.09.05.674447doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.05.674447


volumetrically extracted by averaging across BOLD signals from every voxel corresponding to a given 
ROI. 

 
Weighted permutation entropy calculation 

Time-resolved WPE was calculated using custom MATLAB scripts as described in detail in (1). Code 
for the calculation of WPE was adapted from the online repository originally published with (1) 
(https://osf.io/mr8f7/). WPE is an information-theoretic measure of signal complexity based on a 
symbolic-encoding framework (5). Therein, the regularity of a timeseries is estimated through the 
occurrence of possible abstract patterns over time (i.e., the pattern frequency distribution) (1, 5). The 
mathematical formula for WPE is: 

 

 (1)      

 

To remain in line with recent applications of WPE on neural data (1), we selected a motif length of m 
= 3 and a lag parameter of tau = 1. The motif length, m, is the number of consecutive time points in a 
signal that are simultaneously transformed into rank space by evaluating the position of each data point 
in relation to the m-1 other timepoints. The motif length directly determines the number of possible 
patterns present in the timeseries. For example, a motif length of m = 3 results in 6 (i.e., factorial of 3) 
possible patterns: [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1]. The lag parameter t is the number of 
time points by which each consecutive rank encoding step progresses forward along the timeseries. 
Over a given window, the rank transformation, motif encoding, and progression steps are iteratively 
performed along the timeseries, resulting in a frequency distribution across the possible patterns. 
Importantly, amplitude information is incorporated into frequency distributions by a weighting factor 
that expresses the proportion of amplitude variance accounted for by each motif (5). This amplitude-
weighted pattern frequency distribution is then normalized to produce the weighted relative 
frequencies for each motif which sum to unity. Finally, WPE is calculated as the Shannon entropy over 
this distribution and qualified by log2(m!), producing normalized entropy values between 0 and 1.   

Here, we implemented a time-resolved calculation of WPE using a sliding window technique, which 
has been described in detail in (1) and is commonly used in the dynamic FC literature (24, 25). Briefly, 
each BOLD timeseries was segmented into overlapping windows with a window size of 20 TR (45 
seconds) and a slide length of 1 TR (2.25 seconds). The application of this technique resulted in a set 
of 233 windows (95% overlap) for each BOLD timeseries. For every ROI and within every window, 
WPE was calculated on the 20 second timeseries snippet. This resulted in a WPE timeseries (i.e., 
complexity timeseries) for every ROI with 233 data-points at the resolution of windows. These 
parameters mirrored the window length as applied in the HCP data (1), accounting for significant 
differences in the temporal resolution of our in-house fMRI data (TR: 2.25s) compared to that of the 
HCP (TR: 0.72s). Despite these differences in temporal resolution, complexity estimates in our in-
house cohort of healthy participants were comparable to those in the HCP dataset, and relationships 
between complexity dynamics and FC were remarkably consistent. 
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Complexity timeseries cofluctuation 

Key insights of the original complexome framework included the following findings: (1) the brain 
tends to operate in a state of high complexity, which is seen ubiquitously across the cortex and 
subcortex; (2) brain regions spontaneously engage in complexity drops, which represent transient 
moments of increased regularity in the BOLD signals; (3) the presence of complexity drops across the 
brain is not random, but follows a spatially and temporally structured architecture. Subcortical regions 
engage in complexity drops less frequently than cortical areas, and drop affinity within the cortex 
follows a unimodal-to-transmodal gradient (1). 

To characterize the spatiotemporal pattern of complexity dynamics across the brain, we implemented 
a pairwise measure referred to as “drop coincidence”. This measure quantifies the number of instances 
(windows) in which a pair of brain regions simultaneously engage in a complexity drop. Therein, the 
definition of a complexity drop was determined based on the lowest 1% threshold of WPE values 
across all empirically observed values, such that any complexity value meeting this threshold in a 
given window was considered a complexity drop. While this implementation of drop coincidence 
yielded significant insight into the spatiotemporal complexity architecture of brain activity, several 
modifications are useful to reduce the reliance on a priori defined thresholds and binarization of drop 
coincidence between brain regions.  

Thus, in the present work, we developed a novel computation that enables a continuous account of 
simultaneous complexity changes. To this end, we employed the recent edge-timeseries framework 
from (4) to compute a pairwise measure of complexity timeseries cofluctuations at the resolution of 
temporal windows. The edge-timeseries framework represents a new method that decomposes 
functional connectivity into frame-wise contributions to the overall timeseries correlation.  

Here, we transferred this approach to the realm of complexity dynamics: For every pair of complexity 
timeseries, we performed the following steps to compute an analogous measure of ‘complexity 
cofluctuation’: 

a. Each complexity timeseries was z-scored. The element-wise product between a pair of z-scored 
complexity timeseries was taken as the edge-timeseries (i.e., complexity cofluctuation 
timeseries). 

b. The root sum square of this edge-timeseries was calculated and taken as the amplitude of 
complexity cofluctuation at the resolution of temporal windows.  
 

Within the above framework, a positive value in the edge-timeseries represents a window in which the 
underlying complexity timeseries fluctuate in the same direction (i.e., both move upward or 
downward). Given the previously established definition of complexity drops, we then filtered the edge-
timeseries to select only the instances corresponding to simultaneous decreases in complexity (SCD). 
An instantaneous decrease in complexity was defined within a complexity timeseries, such that in 
window t the complexity value was less than in window t-1. Using these indices of downward 
cofluctuations, we then extracted the corresponding amplitude of the cofluctuation timeseries. The 
area-under-the-curve (AUC) of the thus-indexed timeseries was then taken as a summary measure over 
time, incorporating both the magnitude (amplitude of cofluctuation) and duration (number of temporal 
windows) of SCD between any pair of brain regions. 
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Index of pattern incongruency 

To quantify the differences in symbolic patterns between a pair of BOLD signals, we derived a novel 
measure called the ‘index of pattern incongruency’ (IPI). For each instance of SCD, we computed the 
Euclidean distance between the pattern frequency distributions of the two corresponding BOLD 
windows, as obtained during the calculation of WPE. The Euclidean distance between pairs of 
probability distributions was implemented according to (26) (see 
https://github.com/preethamam/pdfsDistanceandSimilarity). This results in a scalar distance value that 
captures the dissimilarity between the symbolic patterns present in the two BOLD signals. Finally, the 
mean over all indexed windows was taken as the IPI between a given pair of brain regions.  

Given the mathematical formulation of Euclidean distance, the analytical bounds of IPI are 0 and Ö2. 
An IPI of 0 indicates that, in every window of simultaneous downward complexity cofluctuations, a 
pair of BOLD signals have identical pattern frequency distributions. Accordingly, an IPI of Ö2 
indicates that, in every window of simultaneous downward complexity cofluctuation, a pair of BOLD 
signals have maximally distinct pattern frequency distributions. In the case of normalized probability 
distributions (i.e., each summing to unity), the Euclidean distance between n-dimensional distributions 
approaches the upper bound of Ö2 as the maximum value present in the distribution approaches 1. 
Herein, a Euclidean distance of exactly Ö2 is theoretically possible only when, within a given window, 
each BOLD signal’s pattern is explained entirely by one motif and that motif is different for each 
signal. Thus, an IPI of exactly Ö2 is theoretically possible only when, in every window of simultaneous 
downward complexity cofluctuation, a pair of BOLD signals each have deterministic, yet distinct 
pattern frequency distributions. Empirically, we observe a somewhat narrower range of window-wise 
Euclidean distances during moments of SCD [0.00041, 1.35], at least partially due to the rarity of 
BOLD signals exhibiting deterministic behavior; WPE = 0 in less than 0.00005% of instances. Since 
IPI also accounts for the number of windows in which SCD occurs, we again observed slightly more 
narrow empirical bounds [0.031, 0.65].  

Taken together, this novel IPI measure serves as an extension of time-resolved BOLD signal 
complexity analysis with WPE. Since the WPE algorithm is based on the Shannon entropy of the 
empirical pattern distribution, it is agnostic to which particular pattern drives the signal. Therefore, it 
is possible for two different pattern distributions to yield equal WPE values – because, in an 
information-theoretic sense, they are the same (e.g., consider a completely deterministic distribution 
that accumulates the whole probability mass in pattern [1 2 3] and another one with pattern [2 3 1], 
which both yield an entropy of zero). In contrast, our definition of the Euclidean distance between two 
distributions is sensitive to differences in the frequency of each possible pattern present in the signal. 
For an extended explanation, see Supplementary Text 1.  

 
Static functional connectivity 

The product-moment correlation coefficient was computed between every pair of ROI timeseries to 
create a 244-by-244 static functional connectivity (FC) matrix for each participant. Raw correlation 
coefficients were Fisher r-to-z-transformed by taking the element-wise inverse hyperbolic tangent of 
each participants’ FC matrix. 

 
Statistical Analysis 

FC–IPI and FC–AUC-SCD analyses 
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Within-group correlation analyses were calculated with Spearman’s rank tests on mean FC, IPI, and 
AUC-SCD. Multiple regression and commonality analyses were employed to evaluate the normative 
relationship between FC, IPI, and AUC-SCD, using the  “yhat” package for R (19). Commonality 
analysis is a method for partitioning the variance explained in a dependent variable by multiple 
independent variables into unique and shared portions. Herein, commonality analysis was used to 
quantify the variance in FC that is explained by IPI and AUC-SCD in healthy participants.  

Group-level differences in whole-brain and hippocampal FC, IPI, and AUC-SCD were computed using 
a non-parametric, permutation-based T-test (see https://version.aalto.fi/gi tlab/BML/bramila). Group 
differences in network-wise brain measures were computed on the group averages to maintain spatial 
specificity. For each pair of networks, the mean values for a given edge were computed, and Wilcoxon 
rank sum tests over network edges were used to test for differences between HC and NMDAR 
encephalitis. In case of multiple univariate comparisons, the false discovery rate (FDR) was controlled 
using the Benjamini-Hochberg procedure (27). 

 
IPI–AUC-SCD analyses 

Edgewise Spearman’s rank correlation tests between measures of IPI and AUC-SCD were performed 
for each group, calculating a coefficient over the IPI and AUC-SCD values for each edge, resulting in 
a whole-brain correlation map for each group. Whole-brain maps were then thresholded, and edges 
with significant IPI–AUC-SCD correlations underwent network-wise aggregation to summarize the 
extent to which each network was affected. Network-wise percentages were calculated by counting 
the number of edges that had a positive or negative correlation and dividing by the total number of 
edges within or between a network/region. This resulted in a matrix of percentages, where values on 
the diagonal represent the percentage of edges within each network that met a given criteria and values 
off the diagonal represent percentages between pairs of networks.  

Edgewise between-group comparisons of IPI–AUC-SCD correlations were performed using the R 
‘cocor’ package (28). Specifically, we applied Fisher’s z-test for comparing two correlation 
coefficients from independent groups (29). This entails standardizing the correlation coefficients using 
Fisher’s r-to-Z transformation (30) and then calculating the z-statistic given the sample size of each 
group. According to (31), the application of Fisher’s r-to-Z transformation on Spearman’s ρ rather than 
Pearson’s r coefficients is reliable, despite non-parametric assumptions. Between-group comparisons 
of distributions of correlation coefficients were performed using Wilcoxon rank sum tests.  

Finally, to analyze ‘sign-flips’ of IPI–AUC-SCD associations in patients, we computed the normalized 
proportion of edges where patients showed opposite effect directions compared to HC by summing the 
number of occurrences and dividing by the total number of edges. This was calculated independently 
for all within- and between-network connections, as well as for each network and DGM region. We 
performed chi-square goodness-of-fit tests to evaluate if the observed occurrence of sign-flips deviated 
from the expected values, based on the proportional frequency of network and structure labels in our 
population of edges. Due to the exploratory nature of these analyses in particular, statistical results are 
reported at an uncorrected alpha level of 0.05.   

 
Brain-cognition analyses 

Correlation analyses between cognition scores and brain measures were performed using data from 
patients with complete neuropsychological data (n = 61/75). All correlations were computed using 
Spearman’s rank correlation tests and, where applicable, Spearman’s rank partial correlation tests. The 
proportion of change in correlation strength between full and partial correlations was calculated for 
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each edge. This was computed as the absolute value of the difference between a given partial ρ and its 
respective full ρ, divided by the absolute value of the full ρ.  The resultant was then multiplied by the 
sign of the absolute value of the partial ρ minus the absolute value of the full ρ. Thus, the proportional 
change in correlation strength captures both the magnitude of change with respect to the strength of 
correlation, as well as the directionality of both underlying coefficients. Due to the exploratory nature 
of this approach, we thresholded correlation tests at a univariate α-level of 0.001. 
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