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Learning to predict future outcomes is essential for successful decision-making. One impor-
tant mechanism governing such learning is the reward prediction error. In many real-world
scenarios, sensory information about stimuli and choice options is ambiguous, leading to un-
certainty about the environment’s underlying states that guide learning and choice behavior.
In such cases, learning from prediction errors should be modulated by the probabilities of
these hypothetical states, known as the belief state. We hypothesized that prediction errors
might be weighted by the belief state during learning under perceptual uncertainty, and that
this modulation is governed by pupil-linked arousal systems. Combining pupillometry and
an uncertainty-augmented reward-learning task (N = 47), we found that pupil responses to
outcomes scaled with prediction errors and were down-weighted under higher uncertainty.
This suggests that the brain’s arousal systems combine newly arriving perceptual and reward
information to dynamically regulate how much to learn in an uncertain world.

1Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany; 2Humboldt-Universität
zu Berlin, Berlin School of Mind and Brain, Berlin, Germany; 3Section Computational Cognitive Neuroscience,
Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg,
Germany 4Bernstein Center for Computational Neuroscience, Charité Universitätsmedizin, Berlin, Germany 5Max
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Most of our decisions are guided by beliefs we acquire based on perceptual and reward
information about the environment. For example, when learning whether one likes a new pastry
in a bakery, one has to form an association between the type of pastry based on perceptual
information and the experienced taste when eating it. Crucially, this learning process can be
quite challenging when stimuli such as different sorts of pastries cannot be easily distinguished
due to perceptual uncertainty, and one might learn an incorrect stimulus-reward association.
Therefore, taking into account perceptual uncertainty during reward-based learning is crucial
for adaptive behavior (Bruckner et al., 2020; Daw & Dayan, 2014; Ganesh et al., 2024; Ma &
Jazayeri, 2014; Summerfield & Tsetsos, 2012).

One approach to addressing this issue is to combine perceptual inference with reinforcement
learning. During perceptual inference, a belief state can be computed, quantifying the probabil-
ity of a particular state (such as the type of pastry) based on observations. This enables a precise
quantification of how well different states and stimuli in the environment can be distinguished.
Subsequently, learning can operate on belief states. Once an outcome has been observed, the
belief state regulates how much credit each state receives. Specifically, the belief state can be
used to regulate how much one learns from a prediction error, reflecting the difference between
the actual and the experienced reward (Bruckner et al., 2020; Chrisman, 1992; Ez-zizi et al.,
2023; Ganesh et al., 2024; Lak et al., 2017; Larsen et al., 2010). We have recently shown that
when the belief state clearly favors a state (low uncertainty), participants update their beliefs
more strongly in response to a prediction error (higher learning rate). This was in contrast
to situations with higher state uncertainty, in which participants learned more slowly (Ganesh
et al., 2024). These results are generally in line with prior work suggesting a link between belief
state and the regulation of learning from prediction errors (Babayan et al., 2018; Bruckner et al.,
2020; Colizoli et al., 2018; Gershman & Uchida, 2019; Lak et al., 2017, 2020; Starkweather et al.,
2017). Here, we investigate the physiological mechanisms that may support adaptive learning
under perceptual uncertainty.

The arousal systems of the brainstem, such as the locus coeruleus-norepinephrine system, are
in a good position to control learning under uncertainty. These systems are recruited by specific
forms of uncertainty (Aston-Jones & Cohen, 2005; Dayan & Yu, 2006; A. J. Yu & Dayan, 2005),
and could play a key role in the dynamic, uncertainty-dependent regulation of learning rates
(Nassar et al., 2012). Through their widespread ascending projections to the cerebral cortex,
they shape local and large-scale network interactions (Berridge & Waterhouse, 2003; Pfeffer et
al., 2022; Podvalny et al., 2021; Van Den Brink et al., 2019), and synaptic plasticity mechanisms
on different timescales (Bear & Singer, 1986; Berridge & Waterhouse, 2003; Marzo et al., 2009;
Nadim & Bucher, 2014; Rasmussen, 2000; Reynolds et al., 2001; Reynolds & Wickens, 2002;
Vetencourt et al., 2008) in the cortex. This potentially makes them a key neuromodulatory
mechanism supporting learning under perceptual uncertainty.

The activity of brainstem arousal systems can be tracked non-invasively by measuring non-
luminance-mediated changes in pupil size (De Gee et al., 2017; Joshi et al., 2016; McGinley
et al., 2015; Reimer et al., 2016). Several studies show that pupil responses to outcomes encode
prediction errors and surprise governing learning in uncertain and changeable environments (De
Berker et al., 2016; Nassar et al., 2012; O’Reilly et al., 2013; Preuschoff, 2011; Van Slooten
et al., 2018). Moreover, different forms of uncertainty relevant to learning and decision-making
are reflected in pupil-linked arousal responses (Colizoli et al., 2018; De Berker et al., 2016;
Krishnamurthy et al., 2017; Nassar et al., 2012; Urai et al., 2017; Van Slooten et al., 2018).
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Figure 1. Arousal influences learning under perceptual uncertainty. Learning and decision-making
often take place under perceptual uncertainty over stimuli or states due to ambiguous sensory information (e.g.,
two very similar types of pastries). In this case, a belief about the state (i.e., belief state) can be computed to
quantify how confidently the states can be distinguished (e.g., 40% pastry A, 60% pastry B). Belief states that
are more similar mean higher state uncertainty. In contrast, state uncertainty is lower when stimuli or states can
be more clearly distinguished. a| Consequently, under lower state uncertainty (dark green line), the learning rate
(LR) tends to be higher, leading to larger updates for a given prediction error. In contrast, under higher state
uncertainty (light green line), learning rates are lower. b| We hypothesized that this adaptive learning mechanism
is supported by changes in arousal due to uncertainty driving how reward information is processed and used
for further belief updating. Changes in arousal levels are known to reflect a prediction-error signal (see gray
curve) and are associated with uncertain environments. Here, we examine whether pupil-linked arousal encodes a
prediction error that is modulated by uncertainty over the belief state. Lower levels of uncertainty are associated
with an up-regulated expression of prediction error in the arousal signal (dark green curve vs. gray curve), and
higher levels are linked with mitigated representation of prediction errors in the arousal level (light green curve
vs. gray curve).

We built upon these findings and hypothesized that pupil responses reflect uncertainty-
weighted prediction errors during reinforcement learning under perceptual uncertainty (Fig. 1).
In support of our hypothesis, we show that the uncertainty reflected in a belief state modulates
how strongly the pupil reacts to prediction errors. Our study suggests that arousal systems
are responsive to state inference under perceptual uncertainty, regulate the computations of
prediction errors accordingly, and support adaptive learning by combining perceptual and reward
information through a shared neural mechanism.

Results

Task and learning behavior

To investigate if pupil-linked arousal plays a role in belief-state-guided learning, we analyzed
behavioral and pupil data of 47 participants (28 female, 10 male, 9 non-binary; mean age =
25.09 ± 0.67 standard error of the mean (SEM); range: 18-40) who completed the uncertainty-
augmented Gabor-Bandit task (Bruckner et al., 2020; Ganesh et al., 2024). Each trial in the
task consisted of three stages that we briefly summarize here. The main aim of the task was
to maximize rewards, which required that subjects accurately learn reward probabilities from
feedback. In the choice phase, participants were presented with two Gabor patches and asked
to choose the one that maximized rewards. In the feedback phase, they received binary reward
feedback. Finally, in the slider phase, they reported their reward probability estimate with a
slider ranging from 0 to 100. The reported reward probability reflected the participants’ updated
belief after receiving the reward feedback. This allowed us to measure learning from trial to trial
(Fig. 2a). Below, we provide a more detailed explanation of the task structure.
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To maximize rewards, participants had to learn the reward probability, which was governed
by an underlying relationship between each trial’s state, participants’ actions, and the obtained
reward (Fig. 2b). Each trial belonged to a hidden state of 0 or 1. The state determined the
contrast-difference level on that trial. In state 0, the right patch had a higher contrast level
compared to the left patch. In state 1, the left patch had a higher contrast level than the right
one. The contrast difference between stimuli varied between trials, and participants had to
choose the patch with the weaker (half of blocks) or stronger contrast (other half of blocks) to
obtain the most reward. For each correct choice, participants received positive feedback with
either a 90 % or 70 % probability. Positive feedback after wrong choices was given with the
respective complementary probabilities (10 and 30 %, respectively). The reward probability was
governed by an underlying relationship between each trial’s state, participants’ actions, and the
obtained reward (Fig. 2b). Please note that participants were not aware of the mapping between
the contrast of the patches and the reward probability. Thus, they were required to re-learn it
in each block of trials. Finally, participants used the slider to report their reward probability
estimates on a trial-by-trial basis.

We induced uncertainty over the perceptual features of the Gabor patches by manipulating
contrast-difference levels on a trial-by-trial basis. The contrast differences were sampled from a
uniform distribution. Belief states were more uncertain when contrast differences were smaller
(patches looked more similar). In contrast, state uncertainty was lower in trials with larger
contrast differences. Next to manipulating state uncertainty across trials, the task featured
two levels of reward uncertainty governed by a ”contingency” parameter µ. Half of the blocks
had higher reward uncertainty with 70 % reward probability (e.g., contingency parameter µ =
0.7) and lower reward uncertainty with 90 % reward probability (µ = 0.9). Thus, the reward
manipulation resulted in two task conditions (Fig. 2a inset).

To ensure that participants understood the task and learned to choose the more rewarding
option, we analyzed their subjective estimate of the reward probability. We plotted mean learn-
ing curves based on participants’ slider responses, which showed that participants updated their
beliefs about the reward probability in line with the feedback (Fig. 2c). Participants approached
the actual underlying probability across both task conditions (high reward uncertainty: mean
= 0.64 ± 0.01, t45 = 9.55, p < 0.001, Cohen’s d = 6.35, low reward uncertainty: mean = 0.72 ±
0.02, t45 = 13.64, p < 0.001, Cohen’s d = 6.6). There was a significant effect of task condition
on the slider responses whereby the reported reward probability was significantly lower in the
high reward-uncertainty condition (t90 = −3.51, p < 0.001, Cohen’s d = −0.73). Consistent
with these results, participants also learned to choose the correct option (i.e., more rewarding)
more often (Fig. S1). Expanding on these findings about participants’ learning behavior, we
next tested whether state uncertainty impacted learning rates.

Participants used variable learning rates modulated by the belief state. Based on partici-
pants’ slider responses, we first computed each trial’s prediction error and belief update (see
Data preprocessing, for more details). The learning rate (LR) is then computed as the extent
to which participants updated their belief about the reward probability for that trial’s pre-
diction error. Moreover, we approximated belief states contingent on the contrast-difference
level, wherein lower difference resulted in higher state uncertainty. To check if this uncertainty
impacted single-trial learning rates on average, we calculated averages for increasing contrast-
difference bins and found that participants learned more when belief states were less uncertain
(Fig. 2d; Pearson’s r08 = 0.93, p < 0.001).
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Figure 2. Experimental task and learning behavior. a| Uncertainty-augmented Gabor-Bandit task.
Participants were instructed that the aim of the task was to maximize rewards. A pair of Gabor patches with
varying contrast differences was presented on each trial. Participants made an economic choice between the patches
(choosing the high- or low-contrast patch). After each choice and a jittered delay, auditory reward feedback was
presented. Finally, participants reported their estimate of the reward probability (for a hypothetical choice)
by using a slider between 0 (low reward probability) and 100 percent (high reward probability). Inset plot.
We used two experimental conditions. The two conditions differed in terms of reward uncertainty. In half of the
blocks, reward uncertainty was low, and when the ”correct” patch was chosen, the reward probability was 90%. In
contrast, reward uncertainty was higher in the other half of the blocks (70% reward probability for a correct choice).
b| Task contingency. To maximize rewards, participants were required to learn the underlying state-action-reward
contingency for each block of trials. Each trial could belong to either state 0 or 1. In state 0, the patch on the
right had a higher contrast level, and vice versa in state 1. Conditional on the state, the exact contrast difference
was sampled from a uniform distribution ranging from low difference values that were virtually in-discriminable
(higher uncertainty) to higher values (lower uncertainty). The contingency parameter determines the probability
of a reward for a given state-action combination. In this example, the reward probability is higher on choosing
the left patch in state 0. Similarly, the reward probability is higher on choosing the right patch in state 1. Thus,
to learn this underlying relationship, participants need to use the obtained reward to estimate the probability
with which a given action is likely to be rewarded conditional on the current trial’s state. Participants face a
considerable amount of uncertainty in trials with smaller contrast differences making state inference challenging.
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Figure 2 (Continued). c| Learning curve. Mean ± standard error of the mean (SEM) of the reported reward
probability based on the slider plotted across trials. Across the two conditions, participants approached the
actual reward probability albeit with some level of underestimation. Subjects’ reported reward probability was
lower in the condition with high reward uncertainty compared to the low-reward uncertainty condition. d| Mean
single-trial learning rates. Here, we illustrate the learning rate across contrast-difference bins, where lower bins
correspond to more uncertain belief states (high state uncertainty). Subjects used higher learning rates in the
larger contrast-difference bins, suggesting more learning under more distinguishable belief states. e| To decompose
the effects of prediction errors and belief states on learning, we used a regression model (Ganesh et al., 2024). The
model included a term expressing the average influence of the prediction error on the update (fixed LR). Positive
coefficients show that participants have a tendency to report larger updates after larger prediction errors. f| The
model also included a term estimating the influence of belief states on learning (belief-state-adapted LR). Positive
coefficients show that participants adjust the learning rates to the level of contrast difference of a given prediction
error. g| Regression fits for an example participant across three levels of contrast difference demonstrate that
belief states modulated the learning rate. Higher contrast differences led to larger updates compared to trials
with lower contrast differences.

We next decomposed single-trial belief updates to examine the extent to which the belief
state is used to weigh prediction errors while learning. We used a previously developed regression
model, based on which we quantified single-trial belief updates as a linear function of prediction
errors (Ganesh et al., 2024). The model estimated a fixed learning rate (quantifying error-driven
learning) and a belief-state-adapted learning rate (quantifying the dynamic impact of belief
states in interaction with prediction errors) and controlled for the role of nuisance variables on
learning (for more details, see Behavioral regression model). We fit the model to participants’
single-trial updates and found that participants used positive fixed learning rates on average
(mean = 0.09 ± 0.018, t46 = 5.1, p < 0.001, Cohen’s d = 0.74; Fig. 2e) indicating more
learning from larger prediction errors. Next to this, we found that participants learned more
for larger contrast differences (i.e., lower uncertainty over the belief state) for a given prediction
error as indicated by the positive belief-state-adapted-LR coefficient (mean = 0.1 ± 0.019,
t46 = 5.27, p < 0.001, Cohen’s d = 0.77; Fig. 2f). We illustrate this result by plotting the
relationship between prediction errors and updates for varying contrast-difference levels for an
example participant (Fig. 2g), which shows a systematic increase in learning rates with lower
uncertainty. Together, these results show that humans use a mixture of fixed learning driven
by prediction errors and dynamic learning conditional on the belief state, replicating the results
of our previous work (Ganesh et al., 2024). Finally, to quantify the performance of our model
compared to a baseline model with intercept only, we computed the average partial -R2. This
yielded a partial -R2 = 0.42, suggesting that our model captured the behavioral data well (Fig.
S5). Building upon these insights, we next investigated the role of pupil-linked arousal dynamics
in the adaptive learning process.

Feedback-related pupil dilation reflects prediction errors

The central question addressed in this study is whether pupil-linked arousal contributes to adap-
tive learning by means of encoding uncertainty-weighted prediction errors. We first quantified
the arousal level as the baseline-corrected pupil signal on a given trial (Fig. 3a and Fig. S10 for
single-subject pupil responses). Pupil responses during the choice phase (time-locked to patch
presentation) are likely, at least in part, driven by decision formation and the associated uncer-
tainty (De Gee et al., 2014; Urai et al., 2017). By contrast, pupil responses to feedback onset
reflect learning-related computations such as surprise or the encoding of a reward prediction
error (Nassar et al., 2012; Preuschoff, 2011; Van Slooten et al., 2018). We directly compared
pupil responses locked to feedback onset (for details see, Quantifying feedback-related pupil sig-
nal) across two bins of absolute prediction errors and found that pupil dilation was significantly
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Figure 3. Feedback-locked pupil dilation. a| Baseline-corrected time course of mean ± standard error
of the mean (SEM) pupil dilation throughout the trial. The positive response post feedback onset suggests the
encoding of a reward prediction error, while patch and response-locked dilation reflects task-based decision-making
processes. b| Mean pupil response to feedback onset was significantly larger for trials with higher compared to
lower prediction errors. c| Prediction error-related pupil dilation for trials with low and high state uncertainty. To
examine if state uncertainty modulates the extent to which prediction errors scaled pupil dilation, we regressed
pupil dilation onto absolute prediction errors for each time point post feedback onset for high and low state-
uncertainty trials separately. Regression coefficients were significantly larger for lower state-uncertainty trials
compared to trials with higher state uncertainty. This result suggests that prediction errors are down-regulated
as a function of state uncertainty. The gray line indicates p-values from a cluster-based permutation test of the
difference between two groups of trials, after accounting for multiple comparisons.

larger for larger prediction errors (dark purple curve in Fig. 3b, p = 0.004, see Permutation
testing for more details). This finding is in line with the idea that larger errors signal stronger
surprises.

We then examined if the prediction-error component of the pupil response is modulated by
the belief state. To this end, we used a model-based approach whereby we fit absolute prediction
errors and other control variables (see Pupil regression analysis for more details on the control
variables) to individual subjects’ pupil dilation in a sample-by-sample fashion across two bins of
high and low state uncertainty (Urai et al., 2017; see Binned regression approach and Fig. S2 for
more details on the binned regression approach). By comparing beta coefficients that quantified
the extent to which prediction errors modulated pupil responses, we found that the relationship
between absolute prediction errors and pupil dilation is systematically down-regulated for higher
uncertainty over the belief state (light green curve in Fig. 3c, p = 0.004, see Permutation
testing for more details and Fig. S3 showing that the mean absolute prediction errors were
not significantly different across the two bins). This potentially reveals uncertainty-weighted
prediction errors, where higher state uncertainty calls for lower levels of error-evoked arousal.
To examine this idea in more detail, we next turn to an analysis approach with continuous levels
of belief states.

Pupil signal reveals uncertainty-weighted prediction errors

In a model-based regression analysis, we found further evidence of uncertainty-weighted predic-
tion errors (Fig. 4). While our previous analysis approximated this relationship by comparing
high- and low-uncertainty trials (Fig. 3), our next analysis directly tested for the relationship
between prediction errors and contrast differences. We used a linear regression model for each
subject across the time course of feedback-locked pupil dilation (Krishnamurthy et al., 2017;
Nassar, Bruckner, & Frank, 2019; Urai et al., 2017; Van Slooten et al., 2018). The model
estimates the temporal evolution of the extent to which pupil dilation changes for different re-

7



Figure 4. Feedback-locked pupil signal encodes belief-state-weighted prediction errors. a| We
developed a regression model (see inset equation on top of the plot) and fit it to sample-by-sample pupil response
to feedback. Positive coefficients for absolute prediction errors |δ| show a systematic increase in the pupil response
for larger prediction errors showing that prediction errors are reflected in the pupil response. b| Positive coefficients
for the interaction between absolute prediction errors and contrast differences (i.e., belief-state-weighted prediction
errors) indicate that pupil responses increased significantly for larger contrast-difference trials (i.e., lower state
uncertainty) compared to smaller contrast differences for a given level of prediction error. This finding suggests
that prediction errors are modulated by the belief state. c| Across three levels of contrast-difference values, model-
predicted responses for a given prediction error demonstrate that state uncertainty plays a key role in regulating
the pupil response. Higher contrast differences (i.e., on average, lower state uncertainty) led to increased pupil
dilation compared to trials with lower contrast differences. The gray line indicates p-values from a cluster-based
permutation test of the difference between each time course and zero.

gressors. We first accounted for the impact of absolute prediction errors by adding a main effect
to the model. To model the modulatory role of the belief state, we added a key regressor that
captured the interaction effect between contrast difference and absolute prediction error on a
given trial (Fig. 4 inset equation, where |δ| refers to absolute prediction error). We also added
a set of nuisance regressors to simultaneously control for the impact of the main effect of the
belief state, reaction times, slider responses, and gaze position (for more details on the model,
see Pupil regression analysis and Fig. S4 for the effect of control variables on the pupil response).

We found that pupil dilation varied systematically as a function of absolute prediction errors.
That is, larger prediction errors resulted in a significant increase in the magnitude of pupil
dilation post feedback (PE-modulated pupil coefficient in Fig. 4a, p < 0.001, see Permutation
testing for more details). The positive influence of prediction errors reflects an arousal-based
signal for error-driven learning dynamics reminiscent of the behavioral fixed learning rate (Fig.
2e).

More importantly, we determined that uncertainty over the belief state modulates the pupil
responses to prediction errors during learning. Positive coefficients for the interaction of ab-
solute prediction error and contrast difference indicated that larger contrast differences (more
certain belief states) led to increased pupil dilation for a given prediction error (BS-weighted
PE coefficient in Fig. 4b, p = 0.02, see Permutation testing for more details). In other words,
for a given prediction error, pupil dilation is attenuated on trials with higher state uncertainty
and enhanced with decreasing uncertainty levels. This suggests that via regulated arousal, state
uncertainty flexibly changes how incoming reward information is translated into learning. This
result qualitatively complements the behavioral adaptive learning rate (Fig. 2f).

To demonstrate prediction-error weighting in the arousal signal further, we computed feed-
back-locked pupil dilation based on our model-estimated coefficients (Fig. 4c). Mean posterior
dilation plotted across three contrast-difference values showed that lower model-predicted pupil
dilation accompanied higher levels of uncertainty (smaller contrast-difference values). Taken
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Figure 5. Pupil-linked arousal explains belief updating beyond our behavioral model. a|We examined
the relationship between pupil-linked arousal and residual learning, which captures additional variance in behavior
after having accounted for the effects explained by our behavioral regression model (see the inset equation on top
of the plot). We include the posterior-update coefficient that summarizes the model-based behavioral predictions,
allowing us to control for variance in updates explained by the behavioral regression model. b| Feedback-locked
pupil dilation significantly contributed to explaining residual learning from our behavioral model. This shows that
fluctuations in pupil-linked arousal levels explain variance in learning behavior beyond the behavioral regression
model. This suggests that higher arousal levels are related to larger belief updates, potentially because newly
arriving information is considered more strongly than under lower levels of arousal. The gray line indicates p-
values from a cluster-based permutation test of the difference between each time course and zero.

together, our finding suggests that pupil dilation reflects an uncertainty-weighted prediction
error that could drive adaptive learning. Please note that we also used versions of our current
regression model to analyze the pupil signal after controlling for the role of baseline pupil signal
and reaction times. Results indicated that the estimated coefficients converge with our current
results (Fig. S7 and Fig. S8; see Control regression models for more details).

More arousal is linked to larger belief updates

Finally, we directly examined the link between pupil responses and behavioral updating. Based
on our findings, we reasoned that since dynamic information processing is key for adaptive
learning and is tightly associated with arousal levels, fluctuations in pupil dilation may be related
to differences in update magnitude. To test this, we investigated whether variance in absolute
single-trial updates has a systematic relationship with pupil-linked arousal after accounting for
key regressors from our behavioral model (”posterior updates”). We applied a regression model
explaining belief updating, but in this case, we directly took into account pupil dilation in the
model. Moreover, by adding posterior updates as regressors (Fig. 5a, p < 0.001), our analysis
ensured that pupil-linked arousal is used to solely explain residual learning behavior beyond our
behavioral model. Applying this model, we found that arousal levels modulate belief updating
beyond the variance captured in our behavioral analyses. In this model, the main effect of pupil
dilation represented the direct relationship between arousal and updates (for more details, see
Analyzing residual learning). Larger pupil dilation in the later periods post feedback co-varied
positively with participants’ single-trial updates (Fig. 5b, p = 0.008, see Permutation testing for
more details). This suggests that higher general levels of arousal increase update magnitude so
that newly incoming information is more strongly considered for learning. Residual learning is
better explained by such fluctuations in the arousal level that occur later during the learning
window (Fig. 5b). In sum, pupil dilation not only reflects task-related learning computations
but also intrinsic arousal fluctuations, which explain learning beyond those captured by our
behavioral model.
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Discussion

Recent work has indicated that the arousal systems of the brainstem may play an important
role in controlling adaptive behavior in an uncertain world. Here, we examined whether pha-
sic pupil-linked arousal supports adaptive learning under perceptual uncertainty. Our results
show that pupil responses during learning are flexibly modulated by uncertainty over stimulus
discriminability (belief state) while encoding prediction errors. This suggests that pupil-linked
arousal represents prediction errors weighted by the belief state. The dynamic regulation of
prediction errors might help the brain to flexibly adjust reward learning to varying degrees of
uncertainty due to ambiguous perceptual information.

Our findings suggest that phasic pupil-linked arousal encodes an uncertainty-weighted pre-
diction-error signal. Accordingly, the pupil response reflects computations that integrate percep-
tual information encoded by the belief state with reward information through prediction errors.
Such an uncertainty-mediated arousal signal flexibly changes how incoming reward information
is treated during learning. This could reveal an adaptive computational mechanism for slower
and more cautious learning when stimuli cannot be confidently dissociated in the presence of
perceptual uncertainty (Bruckner et al., 2020; Drevet et al., 2022; Ganesh et al., 2024).

While our results are the first to demonstrate that phasic pupil-linked arousal encodes
uncertainty-weighted prediction errors during adaptive learning, previous work has hinted that
this might be the case. Several studies reported pupil correlates of prediction errors and surprise,
independent of perceptual uncertainty (Browning et al., 2015; De Berker et al., 2016; Nassar
et al., 2012; O’Reilly et al., 2013; Preuschoff, 2011; Van Slooten et al., 2018). The relationship
between belief states and prediction errors is consistent with a perceptual decision-making study
that interpreted outcome-locked pupil responses in terms of an uncertainty-weighted prediction
error (Colizoli et al., 2018). Finally, previous animal work measuring dopaminergic activity
showed evidence of uncertainty-weighted prediction errors in mice and monkeys (Lak et al.,
2017, 2020).

More generally, our results add to the current view that state inference is a ubiquitous mech-
anism for adaptive learning under uncertainty. Recent studies have also shown prediction-error
weighting in tasks in which uncertainty arises from ambiguous reward information (Babayan
et al., 2018; Starkweather et al., 2017). Together with our findings, this suggests that reinforce-
ment learning operates on belief states when the states of the environment are only partially
observable. Specifically, learning under uncertainty involves two key processes: first, the brain
computes the current belief state based on the available perceptual information, which then
serves as input for the reinforcement-learning system (Daw & Dayan, 2014; Dayan & Daw,
2008; Wilson et al., 2014). In the case of our study, this is reflected in an uncertainty-weighted
prediction error signal. This dynamic between state inference and learning seems to function
consistently, regardless of whether the source of uncertainty primarily stems from sensory infor-
mation, reward information, or other sources.

Further pupillometry research could expand on these considerations and examine whether
task-evoked arousal encodes uncertainty-weighted prediction errors when uncertainty primarily
arises from ambiguous reward magnitudes or timing. Moreover, future studies could examine
where in the brain belief states are computed and passed on to regulate learning and decision-
making. Plausible candidate areas are the orbitofrontal cortex (OFC), hippocampus, and en-
torhinal cortex, wherein neuromodulatory surprise signals can mediate state inference (L. Q. Yu
et al., 2021). Theoretical and empirical work suggests that the OFC represents hidden-state
information (Nassar, McGuire, et al., 2019; Schuck et al., 2016; Wilson et al., 2014), and it
will be important to better understand whether the OFC also represents state uncertainty that
modulates prediction errors for reinforcement learning.
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Our findings potentially involve key neuromodulatory systems. Mounting evidence identifies
the locus coeruleus-norepinephrine (LC-NE) system, a core component of the arousal network, as
a likely contributor to phasic pupil responses, which influences the central arousal state through
its extensive and rich cortical projections (Aston-Jones & Cohen, 2005; Gilzenrat et al., 2010;
Joshi & Gold, 2020; Joshi et al., 2016; Megemont et al., 2022; Murphy et al., 2011, 2014; Reimer
et al., 2016). Acetylcholine has also been related to LC activity, which is quantified as changes in
both tonic (Reimer et al., 2016) and task-evoked pupil responses (Sara, 1998). This is in line with
influential theoretical work proposing that norepinephrine and acetylcholine track different forms
of uncertainty that regulate learning behavior (Dayan & Yu, 2006; Sara, 1998; A. J. Yu & Dayan,
2005). Moreover, the dopaminergic system, known for its role in reward- and error-related
computations and with connections to the LC, has been linked to changes in pupil diameter (De
Gee et al., 2017; Manohar & Husain, 2015). Other serotonergic regions and the superior and
inferior colliculi have also been tied to pupil-linked arousal (Cazettes et al., 2021; Joshi et al.,
2016; Reimer et al., 2016). This suggests a complex interplay between different neuromodulatory
systems in regulating arousal. In humans, future work using functional magnetic resonance
imaging (fMRI) data from a wider brainstem network (De Gee et al., 2017) could help identify
the neural source behind uncertainty-regulated pupil responses and its link to learning-rate
adjustments.

We next discuss the potential role of cognitive effort and the relationship to uncertainty-
weighted prediction errors. Because pupil dilation could reflect cognitive effort, one potential
interpretation of our results is that lower prediction-error signals on high-uncertainty trials could
be explained by the expenditure of higher effort on such trials. However, at least two arguments
speak against this interpretation. First, we have included contrast differences as main effects
in our pupil analyses. If participants invested higher cognitive effort on high-uncertainty trials
(smaller contrast differences), we would expect significant main effects of contrast differences.
However, neither during the presentation of the Gabor patches (Fig. S9) nor in response to
reward feedback (Fig. S4) did we find significant main effects of contrast difference. Second,
previous studies have found that pupil responses are larger in high-effort trials (Van Der Wel &
Van Steenbergen, 2018). In contrast, the uncertainty-weighted prediction-error signal shows that
more uncertainty (hence potentially more effort) calls for lower pupil responses. Therefore, our
findings seem inconsistent with the interpretation that down-weighted prediction-error signals
for smaller contrast differences reflect the investment of more effort.

Finally, our analysis also showed that in addition to encoding uncertainty, fluctuations in the
phasic pupil response capture variability in learning beyond what could be explained through
behavioral analyses alone. This indicates that pupil-linked arousal not only reflects task-based
computations but also accounts for fluctuations in learning. This finding is in line with the
study by De Gee et al. (2017) showing that seemingly random variability in choice behavior can
partly be explained by phasic responses of brainstem arousal. Together, these lines of research
converge on the view that arousal is a ubiquitous factor that exercises control over how the brain
processes information for learning and decision-making.

In conclusion, we found support for the hypothesis that phasic pupil-linked arousal reflects
prediction errors modulated by belief states during reinforcement learning under perceptual
uncertainty. This suggests that the arousal systems are key in the integration of uncertain per-
ceptual and reward information and offers new insights into the psychophysiological mechanism
behind adaptive belief updating.
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Methods

Participants

We collected behavioral and pupillometry data from 50 participants (29 female, 11 male, 10
non-binary; mean age = 25.59 ± 0.6 SEM; range: 18-40). All participants were recruited from
the local student participant pool of Freie Universität Berlin. Data from 3 participants were
rejected since they performed with less than 50% accuracy. Thus, all further analyses were
conducted on the data obtained from our effective study sample of 47 participants. For taking
part in the study, participants were paid a standard rate of 12.00 e . Moreover, to incentivize
their performance, participants received an extra bonus payment of up to 4.00 e , determined
by their economic choice performance. The study was approved by the ethics committee of the
Department of Education and Psychology at Freie Universität Berlin (”Effects of Perceptual
Uncertainty on Value-Based Decision Making”, protocol number: 121/2016). All participants
reported normal or corrected-to-normal vision, seven reported currently being diagnosed with
a psychiatric condition (e.g., depression, anxiety, schizophrenia) and none reported being diag-
nosed with a neurological condition (e.g., multiple sclerosis).

Experimental task

We used an isoluminant version of the Gabor-Bandit task from Ganesh et al. (2024) optimized
for pupillometry.

Stimulus material

The task was programmed using PsychoPy (version 2022.2.5). The Gabor-Bandit task version of
this study comprised three stages (economic decision-making, reward feedback, slider response)
(Fig. 2a). In the first stage, the stimulus material comprised a fixation dot and two Gabor
patches presented on a screen with a gray background color (#808080). We set the stimulus
properties of the Gabor patches using the in-built GratingStim function of PsychoPy. We used
a sine texture with a spatial frequency of 8 cycles in height and a Gaussian mask. We set
the orientation and phase offset of the Gabor-patch stimuli to 0°. To manipulate the contrast
levels of the Gabor patches g, we adjusted the patches’ visibility v, where 0 indicates that the
patch is transparent (matching the background) and 1 that it is fully opaque. Consequently, the
presented contrast level of each patch was a weighted combination of the stimulus properties z
(as described above) and the background color h: g = vz + (1 − v)h. The mean visibility of
both patches was kept at v = 0.5 across all trials (the average contrast value on each trial was
0.5 irrespective of the contrast difference). The mean contrast was constant across all trials,
and Gabor-patch pairs were matched on luminance across all trials. This was verified using
the SHINE toolbox in Matlab (Willenbockel et al., 2010) whereby pairs of Gabor patches with
varying levels of contrast differences were tested to check if they matched on luminance levels.
The stimuli was presented on a monitor with a refresh rate of 60 Hz and a length of 60.5 cm.

Experimental procedure

At the start of each trial, participants were asked to fixate on the fixation dot for a jittered time
interval between 1.6 to 2.1 seconds. Participants were instructed to fixate on the dot throughout
the trial and avoid blinking or making eye movements as much as possible. In the first stage of
the trial, the choice gratings were presented for 0.5 seconds, while the fixation dot remained on
the screen throughout. Following a jittered delay of 0.2 to 0.5 seconds, the fixation dot would
turn into a square (Go cue), and participants were required to make the economic choice using
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the left and right cursor buttons of the computer keyboard. The diameter of the fixation dot
and the length of the squared Go cue were matched across all trials. This ensured that there
were no sudden shifts in the area of the screen covered by the fixation dot or the Go cue.

In the second trial stage after a variable delay of 0.5 to 1 second, participants were pre-
sented with audio feedback of winning either zero (descending tone from 950 to 350 Hz) or one
(ascending tone from 350 to 950 Hz) point based on their economic choice for 0.25 seconds.
In case of a missed trial, we used white noise as audio feedback. Please note that we rejected
missed trials from our behavioral and pupillometry analysis. Participants were pre-trained to
learn the association between the audio feedback and the number of points. Finally, in the third
trial stage, the task included an additional probe phase. In this phase, participants were first
presented with a slider to report their learned estimate of the reward probability after a delay of
1.5 seconds. Participants were instructed to use the delay to estimate how much they wanted to
update their beliefs after the reward feedback. This allowed us to also measure the pupil signal
in the ”learning” window independent of movements made by the participant to make a slider
response. Finally, participants reported their subjective estimate of the reward probability for
a hypothetical choice using a slider. Participants completed 20 trials in each block of the task.
The presentation order of blocks was randomized across participants. If a participant failed to
respond to a trial, the same trial was repeated at the end of the block.

Task contingencies

Participants were instructed to learn the underlying state-action-reward association to maximize
their rewards. One of the two hidden tasks states st ∈ {0, 1} would determine the contrast
difference on each trial. For instance, if the state of a given trial is 0 (st = 0), the contrast
difference would be negative. That is, the patch on the left side of the fixation dot would have a
lower contrast level than the right patch. This relationship is reversed when the trial belongs to
st = 1. Each block is evenly split, with half of the trials in st = 0 and the other half in st = 1.
The trial’s state, in conjunction with the participant’s choice (left vs. right patch, referred to
as actions at ∈ {0, 1}), would determine the reward probability. For example, if the participant
chose the left patch (at = 0), which is the lower contrast option in st = 0, the reward probability
would be higher. Similarly, when in state st = 1 and choosing action at = 1, which is the
lower contrast option, the reward probability would be higher. These blocks are known as the
low-contrast blocks. Crucially, in half of the blocks, the state-action-reward contingency was
reversed i.e., the other half of the blocks were known as high-contrast blocks where the higher
contrast options were more rewarding (st = 0 and at = 1 or st = 1 and at = 0). Participants
were required to relearn the reward contingencies on each block since the contingency could be
different from one block to the next due to the randomized presentation of blocks.

Task details

The main task comprised 8 blocks with 20 trials across two conditions: the high-reward un-
certainty condition and the low-reward uncertainty condition. In the high-reward uncertainty
condition, the reward probability was 70 %, and in the low-reward uncertainty condition, the
reward probability was 90 %. Across both conditions and for each trial, the contrast difference
between the two patches was randomly sampled from a uniform distribution of [-0.1 to 0] when
the trial belonged to st = 0 and ]0 to 0.1] for trials where st = 1. Thus, the absolute contrast
levels of the patches ranged from 0.40 to 0.60.

During the slider probe phase, the contrast difference was not manipulated across trials,
and the patches were clearly distinguishable. To report the estimated reward probabilities on
each trial, participants were provided with a slider that ranged from 0 to 100%. To prevent
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participants from relying solely on the more rewarding option as the hypothetical choice to
estimate the state-action-reward relationship, we manipulated the hypothetical choice across
task blocks. In half of the blocks, the hypothetical choice during the slider phase was congruent
with the more rewarding option in the given block (congruent blocks). However, on the other
half of the blocks, the hypothetical choice was incongruent with the more rewarding patch in
that block of trials (incongruent blocks). Finally, the order of task blocks was randomized for
each participant to avoid any order effects.

Gabor-Bandit task model

To describe our behavioral analysis, we first present a model of the Gabor-Bandit task intro-
ducing the key parameters. In line with Bruckner et al. (2020),

• T := 20 stands for the number of trials per block, where we use t to indicate the trial
index in all subsequent analyses,

• S ∈ {0, 1} denotes the set of task states, where 0 indicates that the patch on the right
has a stronger contrast level than the left patch and vice versa for state 1; the state also
determines the action-reward contingency in the task,

• C ∈ [−κ, κ] is the set of contrast differences between the patches, where κ indicates the
highest contrast difference,

• A ∈ {0, 1} refers to the set of economic choices, where 0 refers to choosing the left patch,
and 1 refers to choosing the right patch,

• R ∈ {0, 1} indicates the set of rewards,

• pϕ(st) is the Bernoulli state distribution defined by

pϕ(st) := B(st;ϕ) (1)

with ϕ := 0.5, which is the probability for each state,

• p(ct|st) is the state-conditional contrast-difference distribution defined by the uniform
distribution

pκ(ct|st) := U(ct; [−κ, 0])1−stU(ct; ]0, κ])
st (2)

• pat,µ(rt|st) is the action-, contingency-parameter, and state-conditional reward distribu-
tion. This distribution is defined by

pat,µ(rt|st) :=
(
B(rt;µ)

1−stB(rt; 1− µ)st
)1−at (

B(rt; 1− µ)1−stB(rt;µ)
st
)at

(3)

with contingency parameter µ := 0.9 for half of the blocks and µ := 0.1 for the other half
under lower reward uncertainty. Similarly, the contingency parameter µ := 0.7 for half of
the blocks and µ := 0.3 for the other half under higher reward uncertainty.

Data preprocessing

For our statistical analyses, we relied on participants’ single-trial slider responses, from which
we derived updates, prediction errors, and learning rates (Ganesh et al., 2024).
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• µ̂t denotes the subject’s slider response, which is the subject’s estimate of the contingency
parameter µt in the Gabor-Bandit task. Please note that half of the blocks were congru-
ent (the subject was asked to use the slider to report their estimate of the contingency
parameter of the ”correct”, i.e., the more rewarding option). The other half of the blocks
were incongruent (the subject was asked to use the slider to report their estimate of the
contingency parameter of the ”incorrect”, i.e., the less rewarding option). To map the
slider responses from both the congruent and incongruent blocks onto a common scale, we
re-coded the responses of incongruent blocks according to

µ̂t = 1− µ̂t (4)

• Q ∈ {0, 1} indicates a correct (q = 1) and incorrect choice (q = 0), defined by

q =



1, s = 0 ∧ a = 0 ∧ µ > 0.5

1, s = 0 ∧ a = 1 ∧ µ < 0.5

1, s = 1 ∧ a = 1 ∧ µ > 0.5

1, s = 1 ∧ a = 0 ∧ µ < 0.5

0, otherwise

(5)

• D ∈ [−1, 1] stands for the set of prediction errors, defined by

δt =

{
(r̃t − µ̂t), π0 ≥ π1

((1− r̃t)− µ̂t), π0 < π1
(6)

where r̃t := rt+at(−1)2+rt . That is, to compute the prediction error, we take into account
the state-action-reward contingency defined in the task model (eq. (3)). For example, when
a trial’s presented contrast difference favors st = 0, we assume π0 > π1. Conditional on
action at = 0, the expected reward probability is µ̂. To account for the action dependency
of the reward, we compute r̃t from rt, so that, for example, rt = 0 conditional on at = 1
corresponds to r̃t = 1 re-coded for action at = 0 (where rt = 1 had it been chosen).
Similarly, to account for the state dependency of the reward, we rely on (1 − r̃t) when
state st = 1 is more likely than st = 0,

• U ∈ [−1, 1] denotes the set of updates, defined by

ut = µ̂t − µ̂t−1 (7)

• B ∈ {0, 1} indicates a choice-confirming outcome (bt = 1) and a choice-disconfirming
outcome (bt = 0), defined by

bt =



rt, s = 0 ∧ a = 0 ∧ µ > 0.5

rt, s = 0 ∧ a = 1 ∧ µ < 0.5

rt, s = 1 ∧ a = 1 ∧ µ > 0.5

rt, s = 1 ∧ a = 0 ∧ µ < 0.5

1− rt, otherwise

(8)

• K ∈ {0, 1} denotes the set of congruence-trial types, where kt = 0 denotes an incongruent
and kt = 1 a congruent trial type,

• L ∈ {0, 1} denotes the set of contrast-trial types, where lt = 0 denotes a low-contrast and
lt = 1 a high-contrast trial,

• mt represents log-transformed reaction times obtained from the economic choice phase.
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Modeling learning behavior

Signed learning-rate analysis To tease apart the factors influencing the single-trial up-
dates, we developed a regression model that allowed us to dissociate multiple factors driving the
learning rate (Ganesh et al., 2024):

ut =β0 + β1 · δt + β2 · δt · |ct|+ β3 · δt · [bt = 1] + β4 · δt · [kt = 1] + β5 · δt · [lt = 1] (9)

In this model, β0 represents the intercept. The β1 coefficient models the average effect of the
prediction error on the update, which we interpret as the fixed learning rate (LR), commonly
denoted as α in reinforcement learning. To capture how participants adjusted their learning
based on belief states arising from different levels of contrast differences, we included an interac-
tion term between prediction error and absolute contrast difference. We refer to this coefficient
β2 as the belief-state-adapted LR. Next, to control for the effect of the confirmation bias on
learning, we use the interaction term β3 between prediction error and whether an outcome is
choice confirming. This is coded as a categorical variable, i.e., 0 for outcomes that disconfirm
the choice and 1 for outcomes that confirm the choice. Additionally, we added two task-based
block-level categorical variables as control regressors. β4 was the interaction term between con-
trast (high vs. low contrast blocks) and prediction error where 0 denoted trials in a low-contrast
block and 1 for trials in a high-contrast block, and β5 captured effects of congruence (congruent
vs. incongruent block type) in interaction with prediction error where 0 denoted trials in an
incongruent block and 1 for trials in a congruent block. Please note that we did not put any
constraints on the range of predicted updates.

Absolute learning-rate analysis Our signed learning-rate approach estimates coefficients
that could represent (i) uncertainty-driven calibration of learning or (ii) learning corrupted
due to state confusion under uncertainty. We performed an absolute learning-rate analysis
approach to tease these two apart and quantify how uncertainty impacts update magnitude.
We used absolute prediction errors |δt| and updates |ut| in conjunction with all the other task-
based regressors mentioned in eq. (9). The coefficients estimated from this analysis reflect the
magnitude of belief updates for various factors independent of whether participants updated the
slider in the correct or incorrect direction. Next, we used these estimated coefficients to compute
our current regression model’s predicted absolute updates. We combined single-trial task-based
regressor values with the estimated parameters to compute absolute posterior updates pt. Thus,
the posterior updates summarize the model-based predictions about learning behavior.

Model properties Across both sets of analyses, all continuous regressors were re-scaled within
the range of 0 and 1 by means of the min-max normalization method

x∗t =
(xt)−min(X)

max(X)−min(X)
(10)

where X is the variable of interest, xt is the value on a given trial that gets normalized, and
x∗t is the normalized value for a given trial. This was not done for prediction errors, and we
used its natural scale since it was key to retain its original sign for the signed LR analyses.
We excluded trials where δt = 0 since these trials do not necessitate belief updates. Moreover,
using a canonical linear regression model is based on the assumption that the residuals are
homoscedastic, that is, similar across the range of the predictor variable. However, in our
model, the assumption of homoscedasticity is violated, particularly for larger prediction errors.
Thus, we accounted for heteroscedasticity by using a weighted regression model, wherein more
weight is given to the observations with smaller residuals providing more reliable information.
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Regression diagnostics We computed a partial-R2 to capture the extent to which our signed
and absolute behavioral regression models explain learning behavior relative to a baseline model
with no task-based predictors. To do so, we used the following approach

partial-R2 =
SSEbaseline − SSEbehv

SSEbaseline
(11)

where SSEbehv is the sum of squared errors of our signed or absolute behavioral regression model
and SSEbaseline is the sum of squared errors of a baseline regression model with an intercept
and excluding all other predictors.

Pupillometry

Pupil diameter along with horizontal and vertical eye position was measured from the left eye
using an EyeLink 1000 plus desktop mount eye-tracker (SR Research, Ontario, Canada) at a
sampling rate of 1000 Hz while participants performed the behavioral task in a dark room.
Participants were instructed to place their heads on a chin rest during the task. The distance
between the screen and the chin rest was kept constant at 60 cm. Calibration and validation
procedures were performed before the start of the task. A calibration was accepted only if
the eye tracker recognized it as ”stable”. After the calibration procedure was completed, we
performed validation. If the deviation between the actual and predicted gaze location based on
calibration was more than 4 mm of visual angle, then the eye-tracker was re-calibrated. The
procedures were repeated between blocks if the participants moved their heads away from the
chinrest. A nine-point calibration grid was used wherein each calibration target was a circle
that was black in color (#000000).

Preprocessing We preprocessed the raw pupil signal for all further analyses using a custom
Matlab preprocessing pipeline. First, blinks that resulted in missing pupil data were identified
automatically by the in-built EyeLink software. A time window of 150 ms was used to add
padding before and after the blink on which linear interpolation was applied. We also used peak
detection on the velocity of the pupil signal to find additional blinks which were also linearly
interpolated (Urai et al., 2017). Pupil data were then band-pass filtered using a third-order
Butterworth filter with a pass band of (0.01, 10 Hz) (Knapen et al., 2016). Low-pass filtering
removes measurement noise from the signal. High-pass filtering removes meaningful slow drift
from the signal. To do so, we applied a low-pass filter, and the filter coefficients acted as the
inputs to the band-pass filter. Moreover, we applied a high-pass filter, and the band-pass filter
itself was run over to the high-pass-filtered data. These steps were based on the in-built Matlab
butter and filtfilt functions. Next, to get rid of dips in the pupil signal that typically follow
a blink or a saccade, we used the filtered pupil signal to first estimate the response to blinks and
saccades using deconvolution. Once these responses were identified, they were regressed out of
the pupil signal (Knapen et al., 2016). Finally, the slow drift obtained from the low-pass-filtered
signal was added back to the cleaned pupil signal. The pupil signal was then z-scored for each
participant and down-sampled to 100 Hz.

Pupil data analysis

Quantifying feedback-related pupil dilation To examine our questions specific to the
influence of state uncertainty on arousal levels during learning, we first obtained pupil dilation
for each trial after the feedback presentation. For this purpose, we relied on the pupil diameter
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on each trial after the onset of feedback until the end of the trial. Next, we baseline-corrected it
by subtracting the mean pupil diameter for 300 ms before the event onset to obtain each trial’s
feedback-related phasic pupil dilation. For all model-based analyses, we used the computed
single-trial pupil dilation.

Modeling feedback-related pupil dilation To examine the relationship between task-based
and single-trial behavioral parameters and baseline corrected pupil response to feedback onset,
we applied the following regression model to single-trial feedback-related pupil dilation for each
time point:

Pupil = β0 + β1 · |δt|+ β2 · |δt| · |ct|+ β3 · |ct|
+ β4 ·mt + β5 · |ut|+ β6 · xt + β7 · yt

(12)

β0 is the intercept. β1 is the coefficient that reflects the main effect of absolute single-
trial prediction errors on pupil dilation. We refer to this as the prediction-error-modulated
pupil coefficient as it models the impact of prediction error magnitude on pupil dilation. β2
is the coefficient that captures the interaction effect between absolute prediction errors and
contrast-difference levels. This regressor approximates the changes in pupil dilation for different
levels of state uncertainty for a given prediction error. We refer to this as the belief-state-
weighted prediction error coefficient. Next, to check if state uncertainty had a direct influence
on pupil dilation, we added the main effect of contrast difference as a regressor (β3). Next,
we added the following nuisance variables as control regressors. β4 captures variance explained
by reaction time. We also added absolute single-trial belief updates as a regressor (β5) to
control for variance in pupil dilation due to larger slider responses and its collinear relationship
with absolute prediction errors. Next, to control for any fluctuations in pupil dilation resulting
from changes in horizontal (xt) and vertical (yt) eye position, we added regressors β6 and β7,
respectively. All variables were z-scored separately for each participant.

Binned regression approach To examine if state uncertainty impacts how much prediction
errors regulate pupil dilation, we used a binned regression approach. Based on median split-
ting, we create two separate bins of trials with high and low contrast-difference levels for each
participant. Next, we fitted the following model separately to explain the pupil dilation within
each bin in a sample-by-sample fashion. Please note that this model is a reduced version of eq.
(12) as we excluded contrast-difference-related regressors. All other nuisance regressors were
included as control variables and normalized by z-scoring for each participant:

Pupil = β0 + β1 · |δt|+ β2 ·mt + β3 · |ut|+ β4 · xt + β5 · yt (13)

The binned regression approach results in two sets of β1 coefficients, which reflect the extent
to which absolute prediction errors impact pupil dilation in low and high contrast-difference
trials.

Arousal-based analysis of behavioral residuals In order to test if and how fluctuations
in pupil-linked arousal relate to belief updates beyond our behavioral model, we fit the following
model to absolute single-trial belief updates:

|µ̂t| = β0 + β1 · |pt|+ β2 · |Pupil|+ β3 · |ct| · |Pupil|
+ β4 · |Pupil| · |δt|+ β5 · |Pupil| · |δt| · |ct|

(14)
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Cluster-corrected permutation testing Our regression analysis, binned regression analysis
and residual learning analysis resulted in coefficients estimated for each time point in the feed-
back time window. Thus, we used a cluster-corrected permutation-test approach for significance
testing to account for multiple comparisons over time. We relied on the ft timelockstatistics

function by FieldTrip (Oostenveld et al., 2011). First, we calculated the original test statistic
(t-value) for the data by comparing the conditions of interest in the case of a two-tailed test
or one set of values to zero for a one-tailed test. To perform clustering, we grouped adjacent
data points that exceeded a predefined threshold based on the test statistic. Next, the condition
labels of the data were randomly shuffled between the two groups for the two-tailed test. Alter-
natively, we used a sign-flipping procedure which involves randomly changing the signs (positive
or negative) of the data when comparing data from one condition to zero. The test statistic
(t-value) was then calculated for the permuted dataset, and we repeated this procedure 1000
times to create a null distribution. Finally, the original test statistic was compared to this null
distribution, and the p-value indicates the proportion of permuted statistics that are greater
than the original statistic.

Data and code sharing

All code and processed data required to reproduce our analyses and figures are available at
https://github.com/prashantig25/Perceptual unc aug task pupil.
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Supplementary material

Economic choice performance

Figure S1. Choice behavior. Mean ± standard error of the mean (SEM) economic performance, defined as
the frequency of choosing the more rewarding or correct option across the two experimental conditions.

The average economic choice performance was above chance in both conditions (high reward
uncertainty: mean = 0.72 ± 0.022, t45 = 9.89, p < 0.001, Cohen’s d = 4.84, low reward
uncertainty: mean = 0.76 ± 0.017, t45 = 15.26, p < 0.001, Cohen’s d = 6.58).
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Binned regression analysis

Figure S2. Binned regression approach. Regression coefficients explaining feedback-locked pupil dilation,
estimated for two bins of low and high state uncertainty trials for a| update magnitude, b| reaction times, c|
gaze position on the x-axis, d| gaze position on the y-axis. The gray line indicates p-values from a cluster-based
permutation test of the difference between two conditions.

Figure S3. Absolute prediction errors for levels of state uncertainty Mean ± standard error of the mean
(SEM) absolute prediction errors for high and low levels of state uncertainty. There was no significant difference
between the mean absolute prediction errors computed for trials with high state uncertainty as compared to low
levels of state uncertainty.
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Additional regression coefficients main analysis

Figure S4. Influence of additional task-based and control regressors on pupil dilation post feedback.
Model-estimated coefficients for each time point, explaining the impact of the main effect of a| contrast difference
(reflecting state uncertainty), b| update magnitude, c| reaction times, d| gaze position on x-axis, and e| gaze
position on y-axis on feedback-locked pupil response. The gray line indicates p-values from a cluster-based
permutation test of the difference between each time course and zero.

22



Additional regression coefficients arousal analysis

Figure S5. Model-fit assessment. a| A visual representation of the goodness of fit, as illustrated by the model-
predicted posterior absolute updates using estimated parameters and single-trial regression data. b| Partial-r2
values show the regression model was moderately effective in capturing and explaining learning data as compared
to a baseline model, despite heterogeneity across participants.

To systematically compare the regression results to the empirical data, we computed the model-
predicted posterior updates. Model-based updates captured the general trend in participants’
learning behavior (Fig. S5a). One key difference is that empirical updates included a higher
frequency of extremely small perservative updates as compared to the model (around 0 as
indicated by the blue bar in Fig. S5a). Finally, we examined the regression model’s goodness of
fit using partial-r2, which quantifies the amount of variance captured by our behavioral regression
model as compared to a baseline model with no task-based predictors (Fig. S5b; see regression
diagnostics for more details on the same).
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Figure S6. Contribution of arousal-related regressors in explaining belief updating beyond our
behavioral model. a| The impact of trial-by-trial fluctuations in pupil-linked arousal to explaining residual
learning was significantly modulated by the level of state uncertainty. This could suggest that pupil-linked arousal
fluctuations are more crucial to explaining variance in learning behavior specifically under higher state uncertainty.
b| Model-predicted absolute updates across bins of high and low state uncertainty. Higher state uncertainty (i.e.,
on average, smaller contrast differences) led to larger belief updates, for higher levels of pupil-linked arousal, as
compared to trials with larger contrast differences. Moreover, the impact of trial-by-trial fluctuations in pupil-
linked arousal to explaining residual learning was not significantly modulated by c| absolute prediction errors and
d| and its interaction with the level of state uncertainty. The gray line indicates p-values from a cluster-based
permutation test of the difference between each time course and zero.

24



Control regression analysis

Our main analysis approach based on eq. (12) applies the regression model to baseline-corrected
pupil dilation post-feedback onset. However, to ensure that our results hold across different
regression approaches, we applied two alternative control models. In the first model, pupil
baseline was a regressor in the model and not removed from the signal before the analysis.
In the second model, we additionally removed reaction-time components before applying the
regression model. In both cases, the results were similar to our main analysis.

Baseline as a regressor

To assess the phasic pupil response independent of baseline arousal level (Gilzenrat et al., 2010;
He et al., 2020; Murphy et al., 2011), we applied the following control regression model to
single-trial, feedback-related and non-baseline corrected pupil diameter for each time point.

Pupil = β0 + β1 · |δt|+ β2 · |δt| · |ct|+ β3 · |ct|+ β4 · baselinet
+ β5 ·mt + β6 · |ut|+ β7 · xt + β8 · yt

(15)

Since the model is being fit to a non-baseline corrected measure of pupil-linked arousal, we
added the mean of the pupil diameter during the baseline period (i.e., 300 ms before feedback
onset) as a regressor. Thus, β4 accounts for the impact of baseline arousal on the pupil diameter.
The beta coefficients estimated from our control model aligned with the main findings. The
positive main effect of absolute prediction errors and the interaction effect between prediction
errors and state uncertainty qualitatively resemble the effects from our main analysis (Fig. 4a
and b) and are significantly different from zero (see PE-modulated pupil, p = 0.002 in Fig. S5b
and c).

Figure S7. Control regression model with baseline as regressor. We applied a control regression model
to explain non-baseline corrected pupil response at each time point in the feedback phase. To account for the
impact of baseline arousal on pupil response, we added the main effect of baseline response as a regressor in
the model. Model-estimated parameters for a| the level of state uncertainty, b| absolute prediction errors, c|
interaction between state uncertainty and prediction errors, d| baseline pupil response, e| absolute updates, f|
reaction-times, g| x-gaze position and h| y-gaze position.
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Removing reaction-time components prior to analysis

We also controlled for trial-by-trial variations in the amplitude of the pupil responses caused by
differences in reaction times across trials (Hoeks & Ellenbroek, 1993; Urai et al., 2017). In par-
ticular, before estimating the parameters of the regression model, we regressed out components
explained by reaction time.

Pupil’ = Pupil− (PupilT ·mt) ·mt (16)

where ”Pupil” is the original vector of pupil responses, mt is the vector of the corresponding
single-trial reaction times (log-transformed and normalized to a unit vector), and T denotes
matrix transpose. We then fitted our regression model from eq. (12) to the residuals (Pupil’),
which reflected pupil responses after removing components explained by single-trial reaction
times. Please note that although eq. (16) accounts for the impact of reaction time on the
response amplitude, we also accounted for single-trial reaction times within the regression as
before.

The beta coefficients estimated from this control model were again in alignment with our
main findings. The positive main effect of absolute prediction errors and the interaction effect
between prediction errors and state uncertainty are comparable to the effects from our main
analysis (Fig. 4a and b) and are significantly different from zero (see PE-modulated pupil,
p < 0.001 and BS-weighted PE, p = 0.02 in Fig. S6b and c).

Figure S8. Control model with RT regressed. We applied a control regression model to baseline-corrected
pupil response after removing the impact of reaction times at each time point in the feedback phase. Model-
estimated parameters for a| the level of state uncertainty, b| absolute prediction errors, c| interaction between
state uncertainty and prediction errors, d| absolute updates, e| reaction times, f| x-gaze position and g| y-gaze
position.
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Figure S9. Influence of task-based and control regressors on pupil dilation post patch. We applied
a regression model to explain baseline-corrected pupil response at each time point in the patch phase. Model-
estimated parameters for a| x-gaze position, b| y-gaze position, c| contrast differences (reflecting state uncertainty),
and d| low reward uncertainty.
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Figure S10. Single-subject average (black curve) and single-trial (gray curves) pupil response after
feedback onset
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