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Characteristic functional 
connectome related 
to Post‑COVID‑19 syndrome
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Jörg B. Schulz 1,2, Carsten Finke 3,4,7 & Kathrin Reetz 1,2,7*

Post‑COVID‑19 syndrome is a serious complication following SARS‑CoV‑2 infection, characterized 
primarily by fatigue and cognitive complaints. Although first metabolic and structural imaging 
alterations in Post‑COVID‑19 syndrome have been identified, their functional consequences remain 
unknown. Thus, we explored the impact of Post‑COVID‑19 syndrome on the functional connectome 
of the brain providing a deeper understanding of pathophysiological mechanisms. In a cross‑sectional 
observational study, resting‑state functional magnetic resonance imaging data of 66 patients with 
Post‑COVID‑19 syndrome after mild infection (mean age 42.3 years, 57 female) and 57 healthy 
controls (mean age 42.1 years, 38 female) with a mean time of seven months after acute COVID‑19 
were analysed using a graph theoretical approach. Network features were quantified using measures 
including mean distance, nodal degree, betweenness and Katz centrality, and compared between 
both groups. Graph measures were correlated with clinical measures quantifying fatigue, cognitive 
function, affective symptoms and sleep disturbances. Alterations were mainly found in the brainstem, 
olfactory cortex, cingulate cortex, thalamus and cerebellum on average seven months after SARS‑
CoV‑2 infection. Additionally, strong correlations between fatigue severity, cognitive functioning 
and daytime sleepiness from clinical scales and graph measures were observed. Our study confirms 
functional relevance of brain imaging changes in Post‑COVID‑19 syndrome as mediating factors for 
persistent symptoms and improves our pathophysiological understanding.

Abbreviations
CI  Confidence interval
CNS  Central nervous system
COVID-19  Coronavirus disease 2019
ESS  Epworth sleepiness scale
FDG  Fluorodeoxyglucose
FSMC  Fatigue scale for motor and cognitive functions
MoCA  Montreal Cognitive Assessment
pd  p-direction
PSQI  Pittsburgh sleep quality index
SARS-CoV-2  Severe acute respiratory syndrome coronavirus type 2
SD  Standard deviation
TMT  Trail making test
%ROPE  Percentage of values in the region of practical equivalence
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Post-COVID-19 syndrome is a poorly understood clinical condition that affects at least 10% of individuals 
with a prior SARS-CoV-2 infection leading to Coronavirus Disease 2019 (COVID-19)1. As biomarkers are still 
not available, the diagnosis is based on a temporal definition, defining long-COVID as symptoms persisting or 
newly developing four weeks and in case of Post-COVID-19 syndrome 12 weeks after SARS-CoV-2  infection2.

Besides respiratory complaints, Post-COVID-19 syndrome frequently includes neurological sequelae such 
as fatigue, cognitive impairment, smell and taste disturbances and  headache3,4. These long-term symptoms have 
proven to be limitedly objectifiable by means of standard clinical diagnostic measures including routine clinical 
 neuroimaging5. However, first in-depth metabolic, microstructural, and functional brain imaging studies have 
begun to uncover SARS-CoV-2 associated central nervous system (CNS) alterations that otherwise appear mac-
rostructurally unremarkable in conventional brain  imaging6–11. These studies have in common that multiple brain 
regions across distinct brain networks are affected and even if the extent of affected brain regions partly diverges 
between studies, a pattern of common CNS abnormalities after COVID-19 disease appears emergent. This pat-
tern includes the olfactory cortex and associated regions, the thalamus, basal ganglia, the limbic system, the 
brainstem, and the cerebellum and was associated with clinical measures of fatigue and cognitive  dysfunction6–11.

Despite emerging evidence from neuroimaging studies of virus-associated long-term imprints on the brain 
structure, literature characterising how they manifest in the functional connectome and whether they relate to 
clinical signs and symptoms is  scarce9,11,12. One study found substantial network disruptions showing reduced 
connectivity between the left and right parahippocampal regions and the orbitofrontal and cerebellar areas 11 
months after acute COVID-19  infection9. In contrast, Espoisto et al. found increased connectivity in the olfactory 
network, suggesting a compensatory  response12. Our multicenter study aimed to uncover so far less-explored 
functional connectome changes post SARS-CoV-2 infection and assess their clinical relevance for commonly 
reported neurological symptoms in a cohort representing the majority of affected individuals, i.e. with mild acute 
infection. As distinctive features of our study, we used graph-theoretical measures in resting-state functional 
magnetic resonance imaging (rsfMRI) and employed both frequentist and Bayesian linear model analyses, pro-
viding compelling evidence of functional network alterations underlying neurological sequelae after mild initial 
COVID-19. Given the various neurological symptoms of Post-COVID-19 syndrome, we expected functional 
connectome alterations throughout brain areas rather than within specific networks. In particular, network dis-
ruptions in olfactory brain regions, and corticolimbic structures known to underlie executive dysfunction and 
fatigue in other neuropsychiatric diseases could be relevant in Post-COVID-19 syndrome as well.

Results
Study participants
Of the 123 included participants, 95 were female and 28 were male. The mean age of study participants was 42.2 
years (standard deviation = 13.8). There was no difference in group membership ( χ2(1) = 0.316, p = 0.574 ) 
across sites, but there was evidence for a difference in distribution of sex ( χ2(1) = 5.675, p = 0.017 ) with a 
larger proportion of female participants in the patient group. There were no differences in age between sites 
(t(119.67) = 0.534, p = 0.594, 95% confidence interval [CI] for difference in means: [− 3.540, 6.158])). There was 
also no difference in average age between both groups ( t(94.864) = −0.065, p = 0.949, 95% CI[−5.298, 4.963]).

Clinical characteristics of the patient group
Time since infection was on average 7.03 months (SD = 3.7). The average total score of the HADS was 13.0 
(SD = 7.6) with an average sub-score of 7.3 (SD = 4.2) for anxiety and 5.9 (SD = 4.3) for depression. The mean 
score for FSMC was 69.1 (SD = 18.4) indicating the presence of severe fatigue. The average total score for the 
PSQI was 8.1 (SD = 4.3) indicating impaired sleep quality. The ESS also indicated increased daytime sleepiness 
with an average score of 9.5 (SD = 5.8). The mean score for MoCA was 27.5 (SD = 1.9) indicating normal cognitive 
function. For full details on the sample and clinical characteristics details see Table 1.

Whole brain differences
On a whole-brain level, betweenness differed between groups ( p < .001, pd = 1, %ROPE = 0 ) with larger values 
in the Post-COVID-19 group. Weaker evidence was also observed for a difference in closeness with smaller values 
in the Post-COVID-19 group ( p = 0.040, pd = 0.987, %ROPE = 100 ). For all other measures no differences were 
observed on a whole-brain level. Full details on whole-brain differences are given in Table 2.

Regional differences
Evidence for regional differences in the Post-COVID-19 group were found in the olfactory gyrus, cingulate 
cortex, red nucleus, thalamus and crus II of the cerebellum, among other regions. An overview of all regions and 
respective graph measures showing alterations is given in Table 3 and supplemental table S1, while a visualisation 
of the locations within the brain is depicted in Fig. 1.

Correlations
Using the approach of setting a threshold based on the p-value associated with the t-test for a correlation differ-
ent to 0, we found for fatigue (FSMC total score) a total of 64 regions (out of 142) with correlations exceeding 
that threshold in at least three graph measures. Regions were widespread with some focus on the cerebellum, 
temporal and occipital lobes, and thalamus. For affective symptoms (HADS total score) the threshold was only 
met in three regions, while for the daytime sleepiness (ESS) ten regions were involved, but for both measures no 
clear patterns emerged. Nine regions met the threshold for the PSQI, but without a clear pattern. For the TMT-A 
test, assessing cognitive processing speed, we found 19 regions meeting the criterion including the cingulate 
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cortex, the insula and the paracentral lobule. Regarding the TMT-B, assessing task-switching capabilities, the 
criterion was only met in four regions.

For the MoCA, the criterion was met in 12 regions, with a strong focus on the cerebellum and bilateral hip-
pocampus. An equal number of correlations meeting the criterion was found for time since diagnosis, with some 
focus on the inferior frontal lobe and red nucleus, but with an overall more diffuse pattern. The distribution of 
correlations for most relevant measures is shown in Fig. 2 in which the points indicate Pearson’s correlations 
coefficient between FSMC, PSQI, time since diagnosis and TMT-A and brain regions of respective graph meas-
ures including triangle, katz, degree and betweenness. The spatial distribution of correlations between graph 
measures and FSMC score is visualised in panel b of Fig. 1. Regions where correlations of clinical variables and 
graph variables met the criterion of strong evidence and where there was evidence for a difference between 
groups are listed in Table 4.

Discussion
This study is among the first showing substantial changes in the functional connectome of the brain in on average 
seven months after acute COVID-19. We have observed widespread changes in network architecture including 
the brainstem, olfactory cortex, cingulate cortex, thalamus, orbitofrontal cortex, and the cerebellum in Post-
COVID-19 patients when compared to age- and sex-matched healthy controls. Furthermore, changes in network 
architecture were related to clinically relevant Post-COVID-19 manifestations, including fatigue severity and 
cognitive dysfunction. Importantly, our study cohort represents the typical clinical phenotype of neurological 
Post-COVID-19 outpatient clinics, that is, primarily female, mid-aged patients with mild to moderate COVID-
19 not requiring  hospitalization13.

Up to date, there is accumulating evidence of brain changes following SARS-CoV-2 infection in the absence 
of macrostructural lesions, which include metabolic, structural and functional alterations. However, although 
a recurring pattern of brain regions including limbic structures, the primary and secondary olfactory cortex, 
thalamus, brainstem, and cerebellum have been repeatedly reported as altered after SARS-CoV-2 infection, there 
is still a great variety regarding their magnitude and clinical  relevance6–11. There have been for example reports 
of increased, as well as decreased, regionally gray matter volumes in similar brain regions and timeframes in 

Table 1.  Sample and clinical characteristics. Data is given as mean ± standard deviation and median, except 
for site and gender where counts are reported.

Variable Post-COVID-19 Healthy controls

Site Aachen/Berlin 38/28 29/28

Sex female/male 57/9 38/19

Age 42.3 ± 11.0; 41 42.1 ± 16.6; 41

Days since diagnosis 211.1 ± 107.0; 200 –

ESS 9.5 ± 5.8; 9.5 –

FSMC total 69.1 ± 18.4; 72.5 –

FSMC cognitive 33.9 ± 9.6; 36.5 –

FSMC motor 35.0 ± 9.6; 37 –

HADS total 13.0 ± 7.6; 11 –

HADS anxiety 7.3 ± 4.2; 6 –

HADS depression 5.9 ± 4.3; 5 –

MoCA 27.5 ± 1.9; 28 –

PSQI 8.1 ± 4.3; 7 –

TMT-A seconds 30.6 ± 11.6; 27 –

TMT-B seconds 66.7 ± 28.1; 57 –

Table 2.  Global comparisons. Shown are results for frequentist and Bayesian modelling. Abbreviations: pd: 
p-direction; %ROPE: percentage of values in region of practical equivalence.

Variable Estimate pd %ROPE t-value p-value

Mean distance 0.007 0.802 100 0.874 0.384

Diameter 0.130 0.939 36.079 1.578 0.117

Betweenness 0.491 1 0 4.190  < 0.001

Triangles 8.739 0.622 0.316 0.362 0.745

Katz Centrality 0.024 0.794 100 0.819 0.418

Hubness –0.003 0.866 100 –1.099 0.272

Closeness –0.003 0.987 100 –2.056 0.040
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long-COVID patients partially correlating with measures of fatigue and cognitive  dysfunction6,9,10. In addition, 
fatigue was found to be associated with microstructural and volumetric changes of the thalamus and basal 
 ganglia7. Hyper- as well as hypometabolism, was found in acute and subacute stages of COVID-19, possibly 
in a time dependent  manner14,15. Until know, there have been only few studies focusing on functional brain 
connectivity changes after COVID-19, which are warranted to clarify and confirm the functional significance 
of reported structural and metabolic brain abnormalities. Recently, Diéz-Circada and colleagues conducted 
a multimodal imaging study on 86 patients, but only 36 healthy control, 11 months after COVID-199. They 
found substantial network disruptions, which manifested as reduced connectivity between the left and right 
parahippocampal regions and the orbitofrontal and cerebellar areas and that were accompanied by reduced grey 
matter volume in cortical, limbic and cerebellar areas in Post-COVID-19 patients. Markedly, they also describe 
significant associations between cognitive dysfunction and the loss of grey matter volume. These changes in 
both brain structure and cognitive function were more notable among hospitalized patients. In another study 
of non-hospitalized individuals, decreases mainly within and between temporal and subcortical regions, such 
as the thalamus, parahippocampal gyri, amygdala, basal ganglia, and superior temporal gyri, were associated 
with more Post-COVID-19 symptoms four to five months after infection compared to symptomatic individuals 
with non-COVID  infection16.

Our study substantially advances previous research as it investigates a critical, therapy-relevant timepoint 
in the chronicity process of Post-COVID-19, notably three to four months after the subacute phase and focuses 
on the vast and, therefore, most relevant patient group, namely female patients with mild initial  infection3. One 
region that emerged as significantly hypoconnected across most regional graph measures was the red nucleus. 
The robust correlation with the time since diagnosis could suggest its susceptibility as one of the earliest or most 
profoundly impacted regions, and/or its delayed recovery. Located in the midbrain of the human brainstem 
the red nucleus is a key component of the motor pathway that connects the cerebral cortex to the spinal cord.

Accordingly, in a multicenter study, 66 of 143 patients showed brainstem hypometabolism compared to 
healthy study  participants8. Harboring neurons of respiratory and cardiovascular circuits, the reticular activation 

Table 3.  Regional comparisons including degree, betweenness, triangles and katz. Shown are results for 
frequentist and Bayesian modelling. Estimate: Estimate from Bayesian analysis pd: p-direction; %ROPE: 
percentage in region of practical equivalence; sub: subgenual; IL: intralaminar.

Region (degree) Estimate pd %ROPE t-value p-value

Olfactory, right − 14.552 0.998 0 − 3.022 0.003

Anterior cingulate sub, left − 7.747 0.997 0 − 2.737 0.007

Posterior cingulate, left 6.978 0.995 1.2 2.577 0.011

Red nucleus, right − 15.603 0.994 0 − 2.527 0.013

Anterior cingulate sub, right − 8.82 0.993 0.692 − 2.493 0.014

Orbitofrontal cortex medial, left − 11.53 0.989 0.226 − 2.359 0.02

Thalamus IL, right 6.194 0.983 5.824 2.113 0.037

Orbitofrontal Cortex lateral, left − 9.841 0.983 2.318 − 2.159 0.033

Inferior parietal, left 4.783 0.982 9.432 2.149 0.034

Amygdala, right − 6.789 0.981 5.171 − 2.084 0.039

Straight gyrus, right − 7.452 0.98 4.553 − 2.083 0.039

Accumbens, left − 7.425 0.978 5.032 − 2.027 0.045

Crus II, right 5.22 0.974 9.571 1.982 0.05

Region (betweenness)

 Vermis III 3.343 0.986 1.797 2.277 0.025

 Inferior parietal, left 2.247 0.984 5.721 2.184 0.031

 Medial temporal Pole, left 2.729 0.983 4.145 2.123 0.036

Region (triangles)

 Red nucleus, right − 958.638 0.995 0 − 2.593 0.011

 Olfactory, right − 902.25 0.994 0 − 2.555 0.012

 Posterior cingulate, left 619.243 0.989 2.545 2.358 0.02

 Thalamus IL, right 631.901 0.989 2.332 2.375 0.019

 Anterior cingulate sub, left − 587.187 0.984 4.468 − 2.172 0.032

 Anterior cingulate sub, right − 637.012 0.983 4.403 − 2.111 0.037

Region (katz)

 Thalamus IL, right 0.55 0.992 2.158 2.414 0.017

 Posterior cingulate, left 0.609 0.991 1.521 2.416 0.017

 Red nucleus, right − 0.816 0.99 0.816 − 2.305 0.023

 Crus II, right 0.548 0.982 4.668 2.136 0.035

 Olfactory, right − 0.685 0.98 3.626 − 2.041 0.043
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system as well as serotonergic, noradrenergic, and dopaminergic neurons, brainstem dysfunction overlaps with 
major Post-COVID-19 symptoms including cognitive impairment with executive attention in particular, fatigue, 
depression, anxiety, headache, myalgia and pain  perception17. Although we found no such clinical correlation, 

Figure 1.  Spatial distribution of brain changes. Shown are differences between patients with Post-COVID-19 
syndrome and controls (a) as well as Pearson’s correlations between graph measures and FSMC (b). Locations in 
the sagittal plane are mapped onto a single two-dimensional image. HC Healthy Controls.
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our data support the idea that chronic brainstem dysfunction is implicated in Post-COVID-19 symptomatology, 
which should be addressed when exploring new therapeutic avenues.

We also found a decreased functional connectivity in the olfactory cortex and the medial orbital gyrus which 
forms the olfactory sulcus and is adjacent to the olfactory tract. As sudden loss of smell is a frequent and early 
symptom of acute COVID-19 our findings may reflect prolonged network disruptions originating from the initial 
 infection3. However, olfactory disturbance has a high and early spontaneous remission rate pointing to network 
disruptions of either neglectable functional relevance or manifesting in higher-order cognitive processes related 
to connecting brain regions, such as memory relevant limbic brain structures. Indeed, the longitudinal landmark 
study of Douad et al., proposed a limbic olfactory network as the main disease pattern following COVID-19, 
in which anosmia-related deprivation of sensory input could potentially lead to longitudinal abnormalities in 
regions connected to the primary olfactory cortex. Specifically, they found greater changes in markers of tissue 
damage in regions that are functionally connected to the primary olfactory cortex in individuals infected with 
SARS-CoV-2 compared to uninfected controls. They also observed a greater reduction in grey matter thickness 
and tissue contrast in the orbitofrontal cortex and parahippocampal gyrus, which both have secondary connec-
tions to the olfactory cortex.

Repeatedly, brain imaging studies have reported abnormalities across distinct severity grades of acute infec-
tion, implicating the cingulate cortex, which is part of the limbic  lobe6,18–20. It contains the cingulate gyrus and 
is subdivided in an anterior and posterior part. We found connectivity changes affecting the cingulate cortex as 
well including a significant decrease in connectivity of the anterior cingulate cortex. Considering its functional 
connection to the piriform cortex our finding adds further evidence to limbic olfactory dominated network per-
turbations following SARS-CoV-2 infection. By contrast, we found an increased connectivity of the left posterior 
cingulate gyrus, which is a central node of the default mode network. Hyperconnectivity in highly linked brain 
areas may impair default mode network suppression, which is crucial for complex cognitive tasks. Indeed, we 
found a strong association of the TMT-A, a test of attention, to hyperconnectivity of the posterior cingulate gyrus 
which could contribute to the deficits in executive functioning we described in Post-COVID-19 patients  before5.

In the thalamus, we found increased connectivity of the intralaminar nuclei which also strongly correlated 
with reported fatigue symptoms. The intralaminar nuclei receive input from various regions of the brain, includ-
ing the cortex, the basal ganglia, and the brainstem, and modulate wakefulness, attention, and the sleep–wake 
cycle via outputs to the cortex. Remarkably, Heine et al. recently identified structural correlates of self-reported 
fatigue, 7.5 months after COVID-19 infection, which included aberrant fractional anisotropy, shape deforma-
tions and decreased volumes of the thalamus and basal ganglia. Interestingly, these alterations overlapped with 
subcortical changes known from multiple sclerosis, in which fatigue is a dominant non-motor  symptom7. Fur-
thermore, diffusion markers correlated not only with fatigue severity, such as physical fatigue, and fatigue-related 
impairment in everyday life, but also with daytime sleepiness. By contrast investigating brain changes in long-
COVID patients in a similar timeframe after acute infection Besteher et al. described significantly enlarged grey 

Figure 2.  Distribution of correlations between selected clinical measures and graph data. Points indicate 
Pearson’s correlations coefficient between FSMC, PSQI, time since diagnosis and TMT-A and brain regions of 
respective graph measures including triangle, katz, degree and betweenness.
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matter volumes in several clusters including basal ganglia and thalamus in both hemispheres when compared to 
controls, but no association with symptom burden also assessed by neuropsychiatric symptom questionnaires 
and  MoCA10. For now, the reasons for these seemingly contradictory remain unclear, but they may, in any case, 
narrow the scope for targets of future imaging biomarkers.

Lastly, we also observed an increase of connectivity of the crus II of the right cerebellar hemisphere that 
strongly correlated with the MoCA, a measure of cognitive performance. The cerebellum’s role in various cogni-
tive functions and its ’cognitive topography’ has been extensively described  before21–23. As such language, work-
ing memory, and spatial processing have been localized to crus I and  II24. Among the cerebellar lobules, lobule 
VIII and lobule VII, including crus II, outstand in their significant connections with association areas of the 
cerebral cortex linked to higher order behavior, including executive functioning known to be impaired in Post-
COVID-19 syndrome. Intriguingly, grey matter reduction in particularly crus II, was also reported by Douad 
et al. and was associated with greater cognitive decline in COVID-19 infected  individuals25. Similarly, cerebellar 
hypometabolism was also reported by others and found to be associated with olfactory symptoms, cognitive 
complaints, pain, and insomnia in a FDG-PET study of 35 long-COVID patients compared to healthy  controls8,26.

Despite advancements in understanding how SARS-CoV-2 infection impacts the brain, the underlying patho-
mechanisms of long-term symptoms, ranging from chronic inflammation to direct viral-induced mechanisms, 
autoimmunity, viral re-activation and psychosomatic manifestations, remain hypothetical.

Elevated inflammatory markers eight months after COVID-19 infection indicate chronic inflammation 
as mediating factors potentially leading to brain  impairment27. Interestingly, in a study with 54 rheumatoid 
arthritis patients, abnormal anterior cingulum connectivity was associated with higher peripheral inflammatory 
 markers28. In the future, studies assessing the impact of systemic inflammation especially on neural networks 
are sparse but warranted to delineate directed and indirect effects of viral infection.

In the context of our findings, it is worth mentioning that the viral cell-entry receptor angiotensin-converting 
enzyme 2 is abundant in posterior cingulate cortex excitatory neurons, interneurons, and the cerebellum, poten-
tially rendering these regions vulnerable to acute and long-term viral-induced brain  damage29. Autopsy studies 
have demonstrated that COVID-19 may impact the brainstem, inducing inflammatory responses, viral invasion, 
and neurodegeneration although evidence of SARS-CoV-2 neurotrophism is  low30–32.

Lastly, factors unrelated to viral infection including psychosocial pandemic effects, premorbid mental and 
psychosomatic disorders greatly impact Post-COVID-19 syndrome and could manifest in the functional con-
nectome as  well33. Given that psychiatric co-morbidities such as depression represent a substantial risk factor 

Table 4.  Overlap of correlations and group differences. All regions are shown where there was at least weak 
evidence for a difference between groups and pd for correlation unequal 0 was 0.97 or larger. pd: p-direction; 
%ROPE: percentage in region of practical equivalence; IL: intralaminar.

Region (days since diagnosis) Graph measure Pearson’s r t-value p-value pd %ROPE

Superior occipital, left Closeness 0.281 2.325 0.023 0.98 0.019

Red nucleus, right Closeness 0.297 2.467 0.016 0.986 0.004

Red nucleus, right Degree 0.321 2.687 0.009 0.991 0

Red nucleus, right Hubness 0.321 2.692 0.009 0.993 0

Red nucleus, right Katz centrality 0.368 3.145 0.003 0.999 0

Red nucleus, right Triangles 0.301 2.503 0.015 0.988 0.003

Region (FSMC)

 Inferior parietal, left Betweenness − 0.442 − 3.624 0.001 1 0

 Crus II, right Katz centrality 0.437 3.573 0.001 1 0

 Posterior cingulate, left Katz centrality 0.408 3.284 0.002 1 0

 Olfactory, right Katz centrality 0.377 2.994 0.004 0.998 0

 Thalamus IL, right Katz centrality 0.398 3.188 0.002 0.999 0

Region (MoCA)

 Crus II, right Degree 0.432 2.667 0.012 0.99 0

 Crus II, right Hubness 0.369 2.209 0.035 0.979 0.022

Region (PSQI)

 Superior occipital, left Closeness − 0.337 − 2.345 0.024 0.982 0.011

Region (TMT-A)

 Posterior cingulate, left Closeness 0.319 2.667 0.01 0.996 0

 Inferior parietal, left Closeness 0.243 1.984 0.052 0.971 0.057

 Posterior cingulate, left Degree 0.319 2.67 0.01 0.991 0

 Angular, left Hubness 0.304 2.529 0.014 0.989 0.003

 Posterior cingulate, left Hubness 0.331 2.78 0.007 0.998 0

 Posterior cingulate, left Katz centrality 0.3 2.496 0.015 0.994 0

 Red nucleus, right Katz centrality 0.255 2.09 0.041 0.975 0.041

 Posterior cingulate, left Triangles 0.369 3.154 0.002 0.997 0
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for Post-COVID-19 syndrome and are predominantly regarded as network-based disorders, they could also 
mediate chronic postinfectious symptoms.

One major strength of our study is the comparatively large sample size including an age- and sex-matched 
control group and the focus on mild COVID-19 cases, which represents the majority of affected individuals 
worldwide. Furthermore, we used state-of-the-art imaging procedures, elaborate statistical analyses in com-
bination with systematic and standardized clinical screening measures allowing for relevant conclusions on 
radio-clinical associations. This work has some limitations as well. First, the ideal control group would consist 
of sex and age-matched individuals who had experienced a systemic viral infection at the same time to delineate 
long-term effects specifically related to COVID-19 from general post-infectious sequalae, which was however not 
available within the study. Second, inclusion of study participants from two different sites with partially distinct 
scanning protocols can affect the results. To this end, we ensured equal distribution of groups and sex across 
sites and also ensured that mean age was not different between both sites. We also conducted separate analysis 
for each site (data not shown), which showed indeed more effects in global and regional measures for the Berlin 
site. The mainly affected brain areas we discuss here, i.e. cerebellar, limbic and thalamic structures, were however 
significantly affected in both, separate and pooled analyses.

In brief, our study provides evidence for an altered functional connectome after SARS-CoV-2 infection related 
to fatigue severity and cognitive functioning. It adds further evidence to brain changes in brainstem, limbic, 
olfactory, thalamic and cerebellar structures, as contributing factors for frequently reported Post-COVID-19 
symptoms and narrows the search for potential future diagnostic biomarkers and targeted neuropsychological 
interventions. Longitudinal clinical studies should closely monitor the further evolution of clinical and imag-
ing findings as the physiological recovery from COVID-19 seems to extend well beyond the resolution of acute 
symptoms.

Methods
Study participants
Participants were examined at sites in Aachen and Berlin, in Germany. At the Aachen site patients were recruited 
at the Department of Neurology at University Hospital RWTH Aachen. From the Aachen site, healthy controls 
without a history of psychiatric and neurological diseases were available from other research projects originat-
ing from the pre-COVID-19 era using the same imaging protocol. At the Berlin site both, patients and healthy 
controls without a history of psychiatric and neurological diseases were prospectively recruited for this study at 
the Department of Neurology at the Charité Berlin. Healthy controls had no history of previous SARS-CoV-2 
infection.

Patients were eligible for participation if they were at least 18 years of age, had persistent, primarily neuro-
logical symptoms after an infection with SARS-CoV-2 confirmed by reverse transcription polymerase chain 
reaction (PCR) of nasopharyngeal swab or the presence of antibodies against SARS-CoV-2 without previous 
vaccination. Exclusion criteria to undergo magnetic resonance imaging (MRI), included contraindications for 
the use of research MRI, such as metallic implants or claustrophobia. From the available data of 247 study par-
ticipants, 123 study participants (66 patients, 57 controls) were included in the analysis (Supplementary Materials 
Fig. S1). All procedures were approved by the local ethics committees (“Ethikkommission an der Medizinischen 
Fakultät der RWTH Aachen” and “Ethikkommission der Charité—Universitätsmedizin Berlin”) and followed 
the Declaration of Helsinki (EK 192/20, EA2/007/21 [Berlin]). All individuals gave written informed consent 
before participating in the study.

Procedures
Clinical measures
As previously described, patients were neurologically examined, and a thorough medical history was  recorded5,7. 
For this study we focused on the following standardised measures administered at both sites: the Fatigue Scale 
for Motor and Cognitive Functions (FSMC), the Hospital Anxiety and Depression Scale (HADS), the Epworth 
Sleepiness Scale (ESS), the Pittsburgh Sleep Quality Index (PSQI). For the FSMC patients assess their agreement 
on 20 items on a 5-point Likert  Scale34. The FSMC distinguishes between physical and cognitive symptoms (10 
items each). The overall score and subscales include cut-offs for mild (≥ 43), moderate (≥ 53), and severe fatigue 
(≥ 63). For the HADS-D35, the following severity thresholds were considered for each subscale: ≤ 7 for normal, 
8–10 for questionable, and ≥ 10 for increased. ESS and the PSQI were administered for measuring symptoms of 
sleep disorders. Regarding cognitive functioning, the Montreal Cognitive Assessment (MoCA) was used as a 
brief screening tool for mild cognitive  function36. Additionally, raw scores of Trail-Making-Test (TMT) A and B 
were used as a measure of cognitive processing speed (Part A) and cognitive flexibility (Part B).

Imaging
At both sites imaging was performed using Siemens (Erlangen/Germany) Prisma scanners with 3T field strength. 
A high-resolution T1-weighted anatomical scan and a functional imaging sequence were carried out in the 
resting-state. For the functional scan, the lights were turned off and study participants were instructed to not 
think about anything in particular, but could keep their eyes opened. Scanning parameters are given in Table 5.

Data analysis
Pre‑processing of imaging data
We carried out pre-processing of imaging data using the FSL software package (https:// fsl. fmrib. ox. ac. uk/) 
accessed through a wrapper package implemented in the R programming language (R Core Team 2022). Pre-
processing included putting data to standard orientation and skull-stripping of anatomical data. Functional 

https://fsl.fmrib.ox.ac.uk/
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data was motion corrected and checked whether total movement relative to the temporal midpoint of the scan 
exceeded more than 1mm of translation or 1° of rotation. If motion exceeded those limits the study participant 
was removed from further analyses. Also, we checked whether there were movement spikes exceeding 0.5mm 
from volume-to-volume (total movement was calculated assuming the brain is a sphere with a radius of 50mm) 
and flagged affected volumes if present for later removal. However, if movement spikes were present in the lower 
value of 20 volumes or 5% of volumes, the study participant was excluded in further analysis (Supplementary 
Materials Fig. S1).

Next, we ran automatic segmentation of anatomical data into white matter, grey matter and cerebrospinal 
fluid. We then proceeded with B0 unwarping of the EPI data, followed by co-registration of functional data into 
standard space. For co-registration we first generated warp matrices for the functional data into standard space 
(using linear and non-linear registrations with FSL’s tools flirt and fnirt), which were subsequently combined 
with the warp matrices from B0 unwarping to create a functional image in the standard space. Subsequently we 
also translated the tissue probability maps for white matter and cerebrospinal fluid into standard space using 
the previously obtained matrices. The tissue probability maps were now binarised at a threshold of 0.95 (with 
values in [0, 1]) and these maps then used to extract time courses of white matter and cerebrospinal fluid from 
the functional data. We further extracted the global signal time course of the entire brain area in the functional 
data. Additionally, we performed slice scan-time correction. For the previously extracted motion parameters we 
generated the first and second temporal derivative, merged this data with the white matter, cerebrospinal fluid 
and global time courses as well as a constant term and regressed these time courses out of the data.

The resulting data was then parcellated according to a modified version of the AAL version 3.1 atlas. The atlas 
was modified so that regions that are smaller than 10 functional voxels were either merged with neighbouring 
regions, or in case of the Raphé nuclei and locus coeruleus which have no immediate neighbouring regions in the 
atlas, entirely removed. The number of regions in the modified atlas is 142, compared to 166 in the original one.

Next, time courses were extracted for all regions, bandpass filtered (limits: [0.01, 0.15] Hz) and then scaled 
and centred. Finally, the first three and all previously flagged time points were removed from the regional time 
courses.

Graph construction
Graph construction and all subsequent analysis steps were carried out using the R programming language. For 
graph operations we used the tidygraph package. The previous steps lead to the generation of a t × 142 matrix per 
study participant, with columns representing regions and t  the number of volumes. For each study participant, 
a pairwise correlation matrix of the regional time courses was calculated using Pearson’s correlation coefficient. 
The lower triangle of the matrix without the diagonal was used for graph construction, with each region becom-
ing a node and the correlation coefficients becoming weighted, but undirected, edges.

As many commonly used graph theoretical measures in the analysis of functional MRI data can only be 
interpreted in simple graphs that are not complete, a threshold for binarisation of edges was sought. In a first 
step, we searched the proportion of weakest edges that could be removed from each individual graph without 
the graph breaking-up into several components. Obtained values were transformed into percent ranks and all 
values with a percent rank of less than five were discarded and the corresponding 7 study participants removed 
from further  analysis37. Of the remaining values, the lowest proportional threshold was applied as the threshold 
for binarisation for all study participants.

Analysis of network features
We calculated a set of measures characterising different features of the network to gain insight about differences 
in network topology between patients with Post-COVID-19 syndrome and healthy controls. These measures 
can be distinguished by whether they characterise a feature of the entire graph (global measure) or whether they 
characterise a feature of individual nodes in the graph (local measure).

Global measures included the diameter (the length of the longest geodesic [shortest path]) and the mean 
distance (the mean length of all geodesics in the network). Local measures included the nodal degree (number 
of connections a node has), Katz centrality (centrality taking into account not only neighbours, but also nodes 
that are further away), triangles (the count of triangular patterns a region is involved in), betweenness (the 

Table 5.  Scanning parameters. If just one value is given for the voxel resolution this indicates isotropic voxels.

Parameter

Aachen Berlin

T1 EPI T1 Multi-band EPI

Scanner Siemens prisma Siemens prisma fit

Field strength T 3 3

Dimensions 208 × 288 × 288 64 × 64 × 36 191 × 215 × 200 104 × 104 × 72

Volumes n/a 205 n/a 720

Voxel resolution mm 0.8 3.1 × 3.1 × 3.6 1 2

Echo time ms 2.36 30 2.64 37

Repetition time s 2.4 2.21 2.5 0.8

Flip angle degrees 9 90 8 52
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number of times geodesics pass through a node) and closeness (characterising the distance to all other nodes). 
For Katz centrality we chose the dampening-factor α as 0.9(1/�max) , where �max is the largest eigenvalue of the 
adjacency matrix.

Statistical analysis
We compared central tendency in the aforementioned measures between healthy controls and patients with Post-
COVID-19 syndrome to determine differences between groups. For local measures, differences were calculated 
both on the group level as well as on nodal level.

Both the commonly used frequentist approach of a linear model with one factor of group, as well as a Bayes-
ian linear model implemented using the rstanarm R-package were used. For the Bayesian linear model, we used 
weakly informative Gaussian priors and fitted the model using four Markov chains with 2000 iterations each of 
which the first 1000 were used for burn‑in and discarded.

The frequentist p-value, the Bayesian p-direction (pd) and the percentage of values in the region of practical 
equivalence (%ROPE) were applied to evaluate the presence of group differences.

We assume effects to be likely existing if p < 0.05 , pd > 0.97 and %ROPE < 2.5 and report two different levels 
of evidence regarding effects to accommodate the array of computed measures. The term strong evidence refers 
to all three employed values indicating an effect, while the term weaker evidence refers to a situation where only 
two of the three values indicate an effect. The latter cases are usually small, but nonetheless likely existing, effects.

Additionally, we calculated correlations between clinical variables and graph measures by calculating Pear-
son’s product-moment correlation between both measures and using a t-test for an assessment of the effect. We 
also included the Bayesian correlation as implemented in the R-package BayesFactor and computed the same 
metrics as for the group comparison. The same strategy as outlined above, with two of three measures being past 
the thresholds as weak evidence and three agreeing measures as strong evidence were used to evaluate effects.

Data availability
Deidentified imaging data are available on request from the corresponding author.
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