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Abstract
Background  Previous studies have yielded inconsistent results about hippocampal involvement in non-demented patients 
with amyotrophic lateral sclerosis (ALS). We hypothesized that testing of memory-guided spatial navigation i.e., a highly 
hippocampus-dependent behaviour, might reveal behavioural correlates of hippocampal dysfunction in non-demented ALS 
patients.
Methods  We conducted a prospective study of spatial cognition in 43 non-demented ALS outpatients (11f, 32 m, mean age 
60.0 years, mean disease duration 27.0 months, mean ALSFRS-R score 40.0) and 43 healthy controls (14f, 29 m, mean age 
57.0 years). Participants were tested with a virtual memory-guided navigation task derived from animal research (“starmaze”) 
that has previously been used in studies of hippocampal function. Participants were further tested with neuropsychological 
tests of visuospatial memory (SPART, 10/36 Spatial Recall Test), fluency (5PT, five-point test) and orientation (PTSOT, 
Perspective Taking/Spatial Orientation Test).
Results  Patients successfully learned and navigated the starmaze from memory, both in conditions that forced memory of 
landmarks (success: patients 50.7%, controls 47.7%, p = 0.786) and memory of path sequences (success: patients 96.5%, 
controls 94.0%, p = 0.937). Measures of navigational efficacy (latency, path error and navigational uncertainty) did not differ 
between groups (p ≥ 0.546). Likewise, SPART, 5PT and PTSOT scores did not differ between groups (p ≥ 0.238).
Conclusions  This study found no behavioural correlate for hippocampal dysfunction in non-demented ALS patients. These 
findings support the view that the individual cognitive phenotype of ALS may relate to distinct disease subtypes rather than 
being a variable expression of the same underlying condition.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenera-
tive disorder characterized by progressive degeneration 
of upper and/or lower motor neurons (MN) [1]. Although 
motor impairment is the most prominent symptom of ALS, a 
substantial proportion of patients also show non-motor defi-
cits, including cognitive impairment [2]. Previous studies 
suggest that 13–20% of ALS patients develop frontotemporal 

dementia (FTD) [2–4]. Furthermore, ALS and FTD show 
overlap in genetic risk factors (e.g. C9orf72 repeat expan-
sion), neuropathology (e.g. TDP-43 proteinopathy) and brain 
atrophy profiles [5, 6]. Additionally, cognitive and behav-
ioural changes have been reported for non-demented ALS 
patients, with increasing prevalence in advanced disease 
stages [4, 7].

To date, the extent and nature of memory impairment in 
non-demented ALS patients is still unclear [8–11]. Struc-
tural abnormalities of the hippocampus have however been 
reported as a potential neural correlate for memory defi-
cits in ALS. For example, imaging studies have reported 
hippocampal volume reductions that correlated with verbal 
memory performance in non-demented ALS patients [8, 10, 
12]. Conversely, a recent study found no such alterations in 
non-demented ALS patients [5]. The absence of overt hip-
pocampal dysfunction in studies of predominately motor-
affected ALS patients may be due to limited sensitivity of 
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behavioural tests [13], efficient compensation [14] or distinct 
neurodegenerative subtypes—thus challenging the view that 
ALS and FTD are variable phenotypes of the same underly-
ing condition [5].

Here, we conducted a detailed study of spatial cognition 
in non-demented ALS-patients by using a memory-guided 
spatial navigation task. Studies in animals and humans have 
shown that spatial navigation critically depends on integrity 
of an extensive network that includes hippocampus, entorhi-
nal cortex, parahippocampal cortex, retrosplenial cortex, 
prefrontal cortex and striatum [15–17]. Although dysfunc-
tion in any of these regions may yield deficits in navigational 
tasks, impaired spatial navigation has proven to be a particu-
larly sensitive cognitive marker of hippocampal dysfunction 
in preclinical stages of neurodegenerative disorders such as 
Alzheimer’s disease [18]. We therefore reasoned that testing 
memory-guided navigation should reveal subtle or incipient 
hippocampal dysfunction in non-demented ALS patients. 
We employed a virtual maze task that has been used in ani-
mal and human studies of hippocampal function and that 
requires navigation to a target location based on memory 
of landmarks (‘allocentric’ condition) or memory of path 
sequences (‘egocentric’ condition) [19–21]. We further con-
ducted neuropsychological tests of visuospatial memory, 
visuospatial fluency, and spatial orientation.

Methods

Participants

We investigated 43 patients, who were recruited from a spe-
cialised ALS centre and diagnosed according to the Gold 

Coast criteria for the diagnosis of ALS [22] (Table 1). Physi-
cal impairment and disease progression was measured with 
the ALS functional rating scale (ALSFRS-R) [23]. Thirty-
two out of 43 patients were diagnosed with classic amyo-
trophic lateral sclerosis (upper and lower MN affected). Of 
these, twelve patients showed a bulbar onset, 20 patients 
a spinal onset. Four patients were diagnosed with primary 
lateral sclerosis (PLS, only upper MN signs) and seven with 
progressive muscular atrophy (PMA, only lower MN signs). 
Genetic testing was carried out in 20 patients (46.5%). In 
two patients, mutations in the FUS gene were detected, 
in one patient in the SOD1 gene and in one patient in the 
NEFH gene. All patients spoke German fluently, had nor-
mal or corrected-to-normal vision, normal hearing, denied 
substance abuse and had no neuropsychiatric disorders other 
than ALS. No cognitive deficits were reported by patients 
or their caregivers. No patient showed signs of ALS-FTD 
according to Strong criteria [24]. No patient fulfilled the 
Strong criteria for ALS with behavioral impairment (ALSbi) 
[24]. None of the patients showed signs of apathy with or 
without behavior change and no patient met two or more 
of the supportive diagnostic features for behavioral variant 
FTD [24, 25]. All patients showed sufficient hand motor 
function to control the joystick. In addition, 43 age-, sex- and 
education-matched healthy controls were tested (Table 1).

Neuropsychological assessment

All participants were tested with the German version of 
the Edinburgh Cognitive and Behavioural ALS Screen 
(ECAS) [26]. The ECAS is a cognitive assessment that is 
independent of motor disability and consists of 15 sub-
tests across five domains: language, executive functioning, 

Table 1    Demographic and 
clinical data of patients and 
controls

Categorical data presented as absolute frequency. Continuous data presented as median and interquartile 
range (25–75%)
Abbreviations: ALS amyotrophic lateral sclerosis, PLS primary lateral sclerosis, PMA primary muscular 
atrophy, SBSDS Santa Barbara Sense of Direction scale, FRS functional rating scale
1 χ2-test
2 Wilcoxon rank sum test

ALS (n = 43) Control (n = 43) p value

Female/male 11/32 14/29 0.631

German native/non-native 41/2 41/2 1.001

Age 60.0 (54.0–66.5) 57.0 (52.5–65.0) 0.232

Years of education 15.0 (12.7–17.0) 16.0 (14.0–19.0) 0.082

Self-rated spatial abilities (SBSDS) 4.8 (4.3–5.5) 5.0 (4.4–5.3) 0.972

MN involvement (ALS/PLS/PMA) 32/4/7
Months since initial symptoms 27.0 (16.0–52.0)
Months since diagnosis 11.0 (6.0–28.0)
ALSFRS-R 40.0 (35.5–43.0)
ALSFRS-R progression/month 0.3 (0.1–0.4)
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verbal fluency, verbal memory and visuospatial func-
tioning. We compared the scores to age- and education-
adjusted norm values. We further administered three neu-
ropsychological tests of cognitive functions that relate to 
spatial navigation. Visuospatial fluency was assessed with 
the Five Point Test (5PT) [27]. Visuospatial memory was 
tested with the 10/36 Spatial Recall Test (SPART) from the 
Repeatable Battery of Neuropsychological Tests (BRB-N) 
[28]. Spatial orientation was assessed with the Perspective 
Taking/Spatial Orientation Test (PTSOT) [29]. In addition, 
all participants rated their spatial abilities, preferences 
and experiences by completing the German version of the 
Santa Barbara Sense of Direction scale (SBSOD) [30].

Behavioural assessment

Virtual navigation setup

Spatial navigation was tested with a virtual environment 
consisting of a five-armed star-shaped maze surrounded by 
environmental landmarks (Fig. 1). The maze was a modified 
version of the “starmaze” task derived from animal research 
[19–21, 31]. The maze consisted of five symmetrically 
arranged peripheral alleys connected by five central alleys 
and was surrounded by five distant environmental landmarks 
embedded in the virtual landscape. The task was imple-
mented in Unity3D using the Unity Experiment Framework 

Fig. 1   Virtual navigation task setup. First row, five-arm maze sur-
rounded by environmental cues, bird’s eye view, and view at target 
location, participant’s view. Second row, example views at start loca-
tion in baseline, egocentric and allocentric trials, participant’s view. 

Third row, schematic representation of the three types of conditions. 
Ideal paths depicted as blue lines connecting the start and target loca-
tions
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[32]. To create an immersive experience, we projected the 
screen on a white wall with a size of 140 × 80 cm at a dis-
tance of 200 cm. Participants used a joystick controller to 
navigate within the maze.

Memory‑guided navigation task

To test whether motor abilities and joystick control were 
comparable between groups, we first asked participants to 
navigate to 15 sequentially appearing red balloons as quickly 
as possible. In the memory-guided navigation task, we then 
instructed participants to search for a hidden treasure in the 
virtual maze. The treasure was always in the same location 
and participants were asked to navigate directly to the treas-
ure. Initially, the treasure appeared as soon as the subject 
reached its location (‘learning’ trials). We further informed 
participants that in some intermingled trials the treasure 
would not appear, even if the location was correctly remem-
bered (‘probe’ trials). Instead, participants would have to 
indicate the memorized position by pressing a button at its 
location. All participants were informed that neither the 
maze nor the environment would change during the experi-
ment. Trials were terminated four seconds after participants 
reached the target location in learning trials and after button-
press in probe trials. If neither of these events occurred, the 
trial was terminated after 90 s.

The testing session consisted of three blocks with a total 
of 30 trials (details in Supplementary Table 1). During the 
first block, all landmarks were visible, and participants 
always started from the same starting point (‘baseline’ 
condition, Fig. 1). Participants could either use a strategy 
based on the remembered path sequences and body turns 
(‘egocentric’ strategy) or locate themselves relative to the 
distant landmarks (‘allocentric’ strategy) [19, 21]. In case 
participants did not find the treasure within the first three tri-
als, a video showed them the shortest path to the target from 
a first-person perspective. In the second block, we removed 
all distant landmarks to force participants to use an ego-
centric strategy to locate the treasure (‘egocentric’ condi-
tion, Fig. 1). In the third block, the landmarks reappeared, 
but participants now started from novel starting positions. 
The participants were not immediately informed about this 
change but were debriefed about the change in starting posi-
tion after the fourth trial. This manipulation was intended to 
force participants to use an allocentric strategy to locate the 
treasure (‘allocentric’ condition, Fig. 1).

After completion of the task, we asked participants to 
draw the spatial layout of the maze and the environmental 
landmarks from a bird’s eye perspective. Next, we showed 
them the correct maze layout and they had to indicate the 
position of the target location. We also asked participants to 
identify the correct five out of fifteen environmental land-
marks and to position landmarks around the maze.

Data pre‑processing

While navigating the virtual maze, we recorded participant’s 
position as x- and y-coordinates in a Cartesian coordinate 
system. The coordinates were combined with a time stamp 
at a sampling rate of 60 Hz. Pre-processing of the data was 
performed in Matlab (Matlab 2020b, Mathworks, USA). We 
determined four parameters that were derived from animal 
studies and that represent different aspects of spatial naviga-
tion [21, 33, 34].

First, we determined whether our subjects successfully 
navigated to the correct location and calculated the percent-
age of successful trials for each subject for baseline, egocen-
tric, and allocentric conditions (“success rate”). Second, for 
all successful probe trials, we determined the trial duration 
by subtracting the first from the last time stamp (“latency”). 
Third, we calculated the path error to the target location 
for successful probe trials, which reflects the directness of 
navigation (“path error to target”). Fourth, we calculated 
the average distance error to the target location for success-
ful probe trials as a measure of search accuracy and as an 
expression of uncertainty in navigation behaviour (“search 
accuracy”). Additional details on the calculation of these 
variables can be found in the supplement.

Performance in the maze reconstruction task and land-
mark identification task was rated by three independent 
examiners according to predefined criteria. For quantifying 
the positioning of environmental landmarks, we used the 
Gardony Map Drawing Analyzer software [35]. As a result, 
we obtained three separate scores for maze reconstruction, 
landmark identification, and landmark positioning, ranging 
from zero to one with higher values denoting better perfor-
mance. More details on the procedures can be found in the 
supplement.

Statistical analysis

Statistical analyses were performed in RStudio (v. 3.5). To 
identify group differences of nominal variables, we used the 
χ2-independence test. We used a repeated measures ANOVA 
to assess group effects on latency, path error and search 
accuracy across baseline trials. In case of missing sphericity, 
a correction was applied. For between-group comparisons of 
the averaged probe trial data, we used non-parametric Wil-
coxon rank sum tests because Shapiro–Wilk-tests showed 
that the assumption of normality had to be rejected for our 
main variables. Correlations between task performance and 
clinical markers of disease progression (ALS-FRS progres-
sion per month) and disease severity (ALS-FRS-R) were 
assessed using Spearman’s rank correlation coefficient. The 
level of significance was set to p < 0.05.
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Results

Neuropsychological assessment

Seven out of 43 patients (16%) showed performance below 
ECAS cut-off values in domains relevant for Strong criteria 
of ALSci [24], i.e. verbal fluency (n = 1), executive func-
tion (n = 3) or language (n = 3). However, also in the con-
trol group, seven out of 43 subjects showed performance 
below ECAS cut-off values in executive function (n = 3) 
or language (n = 4). None of the participants had impair-
ments in more than one domain. Across groups, we found 
no significant differences for executive function (W = 979.5, 
p = 0.502), verbal fluency (W = 1003, p = 0.266), language 
(W = 1019.5, p = 0.131) and visuospatial abilities (W = 927.5, 
p = 0.761) (descriptive values in Supplementary Table 3). 
ALS patients showed slightly inferior performance in verbal 
memory only (W = 1132.5, p = 0.043, effect size = 0.220). 
Moreover, ALS patients and healthy controls showed com-
parable performance in visuospatial fluency (5PT number 
of unique figures: W = 1037.5, p = 0.238), visuospatial 
memory (SPART immediate and delayed recall: W = 867.5, 
p = 0.758), and spatial orientation (PTSOT mean angle devi-
ation: W = 882.5, p = 0.861).

Memory‑guided navigation

Hand motor function

Patients and controls did not differ with respect to joy-
stick control abilities as indicated by comparable latency 
(W = 903, p = 0.857), path length (W = 866, p = 0.618) and 
velocity (W = 1001, p = 0.514) in the practise task.

Spatial learning in baseline condition

Both groups showed comparable spatial learning abilities as 
indicated by a similar decrease in latency (repeated-meas-
ures ANOVA with Greenhouse–Geisser correction: F(3.814, 
316.536) = 0.6356, p = 0.891), path error (repeated-measures 
ANOVA with Greenhouse–Geisser correction: F(4.091, 
339.541) = 0.682, p = 0.574), and search accuracy (repeated-
measures ANOVA with Huynh–Feldt correction: F(5.148, 
427.284) = 0.803, p = 0.222) across baseline learning trials. 
Consistent with this observation, the success rate in baseline 
probe trials did not differ significantly between ALS patients 
(92.2%) and healthy controls (86.4%) (W = 773.5, p = 0.101). 
Patients also showed comparable navigation efficiency, as 
evidenced by similar latency (W = 940, p = 0.898), path 
error (W = 989, p = 0.582), and search accuracy (W = 926, 
p = 0.993) in successful baseline probe trials (Fig. 2).

Egocentric spatial navigation

Across all egocentric probe trials, 96.5% of ALS patients and 
94.0% of healthy controls (W = 898.5, p = 0.937) were able 
to repeat the correct path sequence and successfully navi-
gated to the correct target location. Navigation efficiency in 
successful egocentric probe trials was comparable between 
groups, with similar latency (W = 819, p = 0.714), path 
errors (W = 793, p = 0.546), and search accuracy (W = 846, 
p = 0.903) (Fig. 2, Supplementary Fig. 1, Supplementary 
Table 2). ALS patients thus acquired and used egocentric 
memory representations as efficiently as healthy controls.

Allocentric spatial navigation

Across all allocentric probe trials, 50.7% of ALS patients 
and 47.7% of healthy controls applied an allocentric 
strategy and successfully navigated to the target location 
(W = 872, p = 0.786). Latency (W = 692, p = 0.796), path 
error (W = 751, p = 0.732), and search accuracy (W = 770, 
p = 0.590) in successful allocentric probe trials were also 
comparable between patients and controls (Fig. 2, Supple-
mentary Fig. 1, Supplementary Table 2). ALS patients thus 
acquired and used allocentric memory representations as 
efficiently as healthy controls.

Correlations between memory‑guided navigation 
and clinical variables

We found no correlation of the success rate in the starmaze 
with disease severity (baseline: rs = − 0.069, p = 0.662, ego-
centric: rs = − 0.163, p = 0.297, allocentric: rs = − 0.080, 
p = 0.608) or disease progression (baseline: rs = − 0.146, 
p = 0.350, egocentric: rs = 0.074, p = 0.639, allocentric: 
rs = − 0.192, p = 0.218). Similarly, we found no associa-
tion between navigation parameters of successful trials and 
disease severity (baseline: latency, rs = − 0.201, p = 0.197; 
path error, rs = 0.272, p = 0.171; search accuracy, rs = 0.237, 
p = 0.126; egocentric: latency, rs = − 0.213, p = 0.170; path 
error, rs = 0.145, p = 0.354; search accuracy, rs = 0.119, 
p = 0.449; allocentric: latency, rs = − 0.255, p = 0.108; path 
error, rs = − 0.006, p = 0.970; search accuracy, rs = − 0.001, 
p = 1.0). For disease progression, we found a correlation 
only for latency across conditions, but not for other navi-
gation parameters (baseline: latency, rs = 0.544, p < 0.001; 
path error, rs = 0.091, p = 0.563; search accuracy, rs = 0.033, 
p = 0.835; egocentric: latency, rs = 0.483, p = 0.001; path 
error, rs = 0.041, p = 0.792; distance error, rs = 0.010, 
p = 0.951; allocentric: latency, rs = 0.310, p = 0.049; path 
error, rs = − 0.109, p = 0.497; search accuracy, rs = 0.016, 
p = 0.923).

We found no significant differences for any of the investi-
gated navigational variables when ALS patients with normal 
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Fig. 2   Performance in the starmaze task. Blue, ALS group; yel-
low, control group. First row, initial course of learning across trials 
in baseline condition. Second to fourth row, navigation performance 
in successful probe trials. Second row, baseline condition; third row, 
egocentric condition; fourth row, allocentric condition. Note that 

both groups show comparable spatial learning abilities and memory-
guided spatial navigation performance, as indicated by the lack of 
group differences in latency, path error, and search accuracy. Data are 
presented as line plots with standard error and rain cloud plots with 
individual data points for each participant
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ECAS values, ALS patients performing below ECAS cut-off 
values in domains relevant for Strong criteria of ALSci [24], 
controls with normal ECAS values and controls performing 
below ECAS cut-off scores were compared (all p ≥ 0.134, 
see Supplementary Table 4 for details). Furthermore, we 
found no significant differences for any of the investigated 
navigational variables when ALS patients, PMA patients, 
PLS patients and controls were compared (all p ≥ 0.084, see 
Supplementary Table 5 for details).

Post‑navigational memory for maze reconstruction, 
landmark identity, and landmark positioning

There were no significant differences between ALS patients 
and healthy controls in reconstruction of the maze layout 
(W = 924.5, p = 1), recall and identification of environmen-
tal landmarks (W = 991, p = 0.568), and positioning of land-
marks on the map (W = 1030, p = 0.364).

Discussion

To the best of our knowledge, this is the first study of spa-
tial navigation in ALS. We investigated navigation in non-
demented early- to mid-stage ALS patients and matched 
controls. We used a virtual reality task that simulates an 
important aspect of everyday behaviour and that has been 
shown to depend on integrity of hippocampus-dependent 
networks [15, 20]. Our study aimed to resolve conflicting 
findings on behavioural correlates of hippocampal altera-
tions in ALS [5, 10, 36]. We found that ALS patients suc-
cessfully learned and navigated a maze from memory, both 
in conditions that forced the use of landmark memory and 
memory of previously travelled path sequences. Memory-
guided navigation success did not correlate with disease 
severity and progression. Measures of navigational effi-
cacy as well as neuropsychological tests of spatial memory, 
visuospatial fluency and spatial orientation did not differ 
between patients and controls. We thus found no behavioural 
evidence for functionally relevant hippocampal dysfunction 
in our cohort of ALS patients.

Our study focussed on early to mid-stage ALS patients 
without evidence of frontotemporal dementia or behavioural 
symptoms and was restricted to ALS patients with preserved 
hand-motor function. Despite these limitations, our cohort 
closely matches previous studies in disease subtypes, disease 
duration, severity, and patient demographics. These studies 
reported several subtle abnormalities of medial temporal 
lobe structures, including hippocampal volume reductions, 
CA1 shape deformations, altered hippocampal functional 
connectivity and thinning of the parahippocampal gyrus [10, 
36, 37]. These regions are essential nodes in networks for 
spatial navigation and memory [15]. Accordingly, deficits in 

spatial navigation were shown to be behavioural markers of 
hippocampal dysfunction in other neurodegenerative disor-
ders [18]. To assess memory-guided navigation in ALS, we 
used an established navigation paradigm that is sensitive to 
hippocampal damage in navigating rodents [31], drives hip-
pocampal activation in navigating humans [20] and captures 
changes in hippocampal function during human brain devel-
opment, ageing and neurodegeneration [19, 38]. An impor-
tant feature is that the paradigm allows the investigation of 
two navigation strategies (i.e. egocentric and allocentric), 
reflecting neural computations in distinct hippocampus-
dependent memory networks [17]. We reasoned that changes 
in functional status of these networks should yield measur-
able changes of corresponding navigation variables in ALS 
patients. However, behaviour was indistinguishable from 
healthy controls, suggesting functional integrity of brain 
networks recruited during navigation.

Although motor symptoms are prominent in ALS patients, 
deficits of language, social cognition, executive functions 
and memory have been reported, even in patients that do not 
meet FTD diagnostic criteria [2–4]. Whether these cognitive 
deficits emerge early and remain stable [10, 39], decline as 
the disease progresses [40, 41] or emerge in later disease 
stages [4, 7] is still unclear. Facing the considerable overlap 
of ALS with FTD in genetic risk factors, neuropathology 
and brain atrophy profiles, it has been suggested that ALS 
and FTD may represent a continuous spectrum of clinical 
phenotypes [6]. One prediction of this hypothesis is that cog-
nitive deficits, including those that relate to hippocampal 
dysfunction, are likely to emerge at some point during the 
disease course even in ‘pure’ ALS patients – provided they 
do not die because of motor impairment. One argument in 
favour of this hypothesis may be the observation of verbal 
memory impairment in non-demented ALS patients [9, 10]. 
A small but significant group difference for verbal memory 
was also observed in our sample. However, neuropathologi-
cal studies show that verbal memory deficits do even occur 
in ALS patients without any hippocampal pathology [42]. It 
has thus been hypothesized that these deficits may relate to 
extra-hippocampal dysfunction, at least in cognitively oth-
erwise normal ALS patients [11, 42].

While there is evidence that hippocampal structural 
pathology can occur in non-demented ALS patients, it is 
unclear if hippocampal dysfunction is limited to distinct 
ALS subpopulations or a general feature of ALS within a 
continuous ALS-to-FTD spectrum. A recent large study 
compared patients with pure ALS, i.e. without obvious 
cognitive or behavioural impairment, to ALS-FTD patients 
and controls [5]. Patients with ALS-FTD showed lower hip-
pocampal volumes and verbal memory impairment com-
pared to pure ALS patients and healthy controls. In contrast, 
hippocampal volume and memory in ALS-pure patients did 
not differ from healthy controls. Facing the heterogeneity of 
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the neurodegenerative profiles, the authors concluded that 
ALS and FTD are unlikely to be variants of the same condi-
tion but may rather represent distinct syndromes with dif-
ferent brain atrophy profiles [5]. Our finding of intact spatial 
cognition in a sample of patients with an established diagno-
sis of ALS and an average disease duration that corresponds 
to the patients investigated in this study fits this hypothesis.

A limitation of our study is the lack of structural imaging 
data. We can thus not exclude that structural hippocampal 
abnormalities were present in some patients but did not yield 
detectable behavioral differences. The lack of longitudinal 
data further leaves open the possibility that distinct disease 
trajectories of ALS motor and cognitive symptoms account 
for our findings and that hippocampus-dependent cognitive 
deficits may occur in later disease stages [7, 43]. Since we 
found no correlations between spatial memory and disease 
severity or progression, we deem this explanation unlikely. It 
is possible, though, that cognitive reserve may have attenu-
ated deficits in a context where hippocampal recruitment 
usually occurs [14]. Future studies may thus extend our 
approach to ALS-patients with more severe physical and/
or cognitive impairments (e.g., executive dysfunction) and 
more aggressive disease progression.

Conclusions

ALS patients without signs of FTD represent the majority 
of ALS patients and account for 85–95% of all ALS patients 
[1, 2]. Normality of navigational parameters and indices of 
visuospatial cognition in our cohort of early- to mid-disease 
stage ALS patients supports the emerging picture of distinct 
profiles for ALS and ALS-FTD in atrophy patterns and net-
work impairments [5, 44]. Clinical care in ALS may there-
fore deliberately focus on individual affected networks rather 
than on a spectrum of possible disease trajectories in patients 
with intact cognition but impaired motor function and vice 
versa. Future studies should combine behavioural tasks with 
functional brain imaging to further investigate the relation-
ship between spatial navigation and hippocampal pathology 
at different disease stages and in different ALS subtypes.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00415-​023-​11753-8.
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