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Abstract

Patients with anti-N-methyl-aspartate receptor (NMDA) receptor encephalitis

suffer from a severe neuropsychiatric syndrome, yet most patients show no

abnormalities in routine magnetic resonance imaging. In contrast, advanced

neuroimaging studies have consistently identified disrupted functional connec-

tivity in these patients, with recent work suggesting increased volatility of

functional state dynamics. Here, we investigate these network dynamics

through the spatiotemporal trajectory of meta-state transitions, yielding a

time-resolved account of brain state exploration in anti-NMDA receptor

encephalitis. To this end, resting-state functional magnetic resonance imaging

data were acquired in 73 patients with anti-NMDA receptor encephalitis and

73 age- and sex-matched healthy controls. Time-resolved functional connectiv-

ity was clustered into brain meta-states, giving rise to a time-resolved transi-

tion network graph with states as nodes and transitions between brain meta-

states as weighted, directed edges. Network topology, robustness and transition

cost of these transition networks were compared between groups. Transition

networks of patients showed significantly lower local efficiency (t = �2.41,

pFDR = .029), lower robustness (t = �2.01, pFDR = .048) and higher leap size

(t = 2.18, pFDR = .037) compared with controls. Furthermore, the ratio of

within-to-between module transitions and state similarity was significantly

lower in patients. Importantly, alterations of brain state transitions correlated

with disease severity. Together, these findings reveal systematic alterations of

transition networks in patients, suggesting that anti-NMDA receptor encepha-

litis is characterized by reduced stability of brain state transitions and that this

List of abbreviations: BOLD signal, blood-oxygen-level-dependent signal; DAMS, distance across meta-states; dATT, dorsal attention network;
DMN, default mode network; FC, functional connectivity; FD, framewise displacement; FDR, false discovery rate; FPN, fronto-parietal network; HC,
healthy controls; LIM, limbic network; MRI, magnetic resonance imaging; mRS, modified Rankin Scale; NMDAR, anti-N-methyl-aspartate receptor;
ratiosim, ratio of within-to-between meta-state similarity; ratiotrans, ratio of within-to-between meta-state trasnitions; ROI, region of interest; rs-fMRI,
resting-state fMRI; SC, subcortical network; SM, sensorimotor network; TE, echo time; TR, repitition time; vATT, ventral attention network; VIS,
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reduced resilience of transition networks plays a clinically relevant role in the

manifestation of the disease.

KEYWORD S
autoimmune encephalitis, functional brain states, functional connectivity dynamics, graph
analysis, transition trajectories

1 | INTRODUCTION

Anti-N-methyl-aspartate receptor (NMDAR) encephalitis is
an immune-mediated disorder of the central nervous sys-
tem caused by autoantibodies targeting the NMDA recep-
tor and leading to a dysregulation of the glutamatergic
neurotransmitter system (Dalmau et al., 2019). The disease
manifests in a complex neuropsychiatric syndrome with
prominent psychiatric symptoms (e.g., delusions and psy-
chosis) and seizures, dyskinesia, psychosis, decreased levels
of consciousness and cognitive dysfunction (Finke
et al., 2012; Graus et al., 2016; Heine et al., 2021). Despite
the severe disease course, only 50–70% of patients show
abnormalities in standard structural magnetic resonance
imaging (MRI) (Graus et al., 2016; Heine et al., 2015),
resulting in a clinico-radiological paradox. In contrast, sev-
eral functional MRI studies have suggested disrupted func-
tional connectivity (FC) in NMDAR encephalitis that is
linked to disease severity, disease duration and cognitive
symptoms (Finke et al., 2012, 2013; Gibson et al., 2019,
2020; Heine et al., 2021; Peer et al., 2017; von
Schwanenflug et al., 2022). In contrast, several functional
MRI studies have suggested disrupted FC in NMDAR
encephalitis that is linked to disease severity, disease dura-
tion and cognitive symptoms (Finke et al., 2012, 2013;
Gibson et al., 2019, 2020; Heine et al., 2021; Peer
et al., 2017; von Schwanenflug et al., 2022). These func-
tional alterations include large-scale functional networks,
such as sensorimotor, frontoparietal, lateral-temporal and
visual networks (Peer et al., 2017). In addition, the hippo-
campus and the medial prefrontal cortex—regions with the
highest NMDAR density (Dalmau et al., 2011)—have been
associated with deficits in memory performance and execu-
tive function, two core cognitive symptoms in NMDAR
encephalitis (Finke et al., 2012; Heine et al., 2021).

FC as measured with resting-state functional MRI (rs-
fMRI) is estimated from the pairwise correlation of
blood-oxygen-level-dependent (BOLD) activity between
brain regions without the presence of an explicit task
(Biswal et al., 1995). However, traditional ‘static’
approaches obtain FC as an average across several
minutes, therefore missing important information that

may be derived from dynamic changes in functional con-
nections (Allen et al., 2014; Calhoun et al., 2014). Hence,
the analysis of FC has been recently refined from a time-
invariant static account to a time-varying description.
This methodological progress allows to unveil temporal
properties of functional brain organization, such as the
identification of functional states, that is, transient con-
nectivity patterns, and their transition trajectories. These
FC dynamics are thought to reflect brain state explora-
tion that facilitates cognition and behaviour and may
vary with disease (Bassett et al., 2011; Deco et al., 2011;
Kringelbach & Deco, 2020). Accordingly, a recent case–
control study investigating FC dynamics in NMDAR
encephalitis showed that patients exhibited altered state
preference as well as increased transition frequencies
between major connectivity patterns (von Schwanenflug
et al., 2022). However, a detailed investigation of the
transition trajectory of brain states and its link to clinical
symptoms is still missing. Brain state exploration—
facilitated by transitions between functional states—is
thought to ensure stable information representation
while promoting functional integration across distant
brain regions and subsystems and, if disturbed, poten-
tially affects information integration and behaviour
(Deco et al., 2011; Lord et al., 2019). Hence, identifying
mechanisms and disruptions of these transition trajecto-
ries may contribute to the understanding of the patho-
physiology of NMDAR encephalitis and further
neuropsychiatric diseases that are associated with
NMDAR dysfunction, for example, schizophrenia.

Graph theoretical approaches are well-suited to study
the temporal architecture of state exploration. Ramirez-
Mahaluf et al. (2020) recently introduced the concept of
transition networks to investigate the trajectory of tra-
versing functional states (from hereon also referred to as
meta-states). In this concept, transition networks are
represented as graphs with brain states as nodes and
transitions between meta-states as directed and weighted
edges. Similar to other biological systems (Latora &
Marchiori, 2001), transition networks show properties of
complex networks (i.e., heavy-tailed degree distribution,
high local efficiency and modularity) indicating an
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organized, cost-efficient, non-random temporal trajectory
of brain states (Ramirez-Mahaluf et al., 2020). Further-
more, transition network characteristics have been
related to motor function and cognitive performance in
healthy controls indicating behavioural relevance
(Ramirez-Mahaluf et al., 2020).

Here, we aimed to specify alterations of the spatio-
temporal trajectory of state transitions and its relation to
disease severity in NMDAR encephalitis. Therefore, we
constructed transition networks for a large sample of
patients and age- and sex-matched healthy controls. We
hypothesized that the temporal structure of state explora-
tion in NMDAR encephalitis would show altered dynam-
ics (von Schwanenflug et al., 2022) and weakened
stability of transition networks compared with a group of
healthy controls.

2 | MATERIALS AND METHODS

2.1 | Participants

For this study, 73 patients with NMDAR encephalitis
were recruited from the Department of Neurology at
Charité - Universitätsmedizin Berlin. All patients fulfilled
diagnostic criteria including characteristic clinical pre-
sentation and detection of IgG NMDA receptor anti-
bodies in the cerebrospinal fluid (Graus et al., 2016).
Patients were in the post-acute phase of their disease
with a median of 2.97 years (interquartile range [IQR]:
2.48) after disease onset. Disease severity at the time of

scan and peak of disease was assessed with the modified
Rankin Scale (mRS). The control group consisted of
73 age- and sex-matched healthy participants without
any history of neurological or psychiatric disease. Data
from 49 patients and 25 controls were analysed in a
recent study by von Schwanenflug et al. (2022) investigat-
ing functional dynamics in NMDAR encephalitis. For the
current study, patient-control matching was optimized
for age and sex through a computational matching algo-
rithm (see Data S1). The two groups were perfectly bal-
anced for sex and did not differ significantly in age as
tested with a Wilcoxon rank sum test (p = .61). Clinical
and demographic characteristics are summarized in
(Table 1). The study was approved by the ethics commit-
tee of the Charité - Universitätsklinikum Berlin and con-
ducted according to the ethical principles of the WMA
Declaration of Helsinki.

2.2 | MRI data acquisition

MRI data were collected at the Berlin Center for Advanced
Neuroimaging at Charité – Universitätsmedizin Berlin using
a 3T Trim Trio scanner equipped with a 20-channel head
coil (Siemens, Erlangen, Germany). RS functional images
were acquired using an echoplanar imaging sequence (repe-
tition time [TR] = 2.25 s, echo time [TE] = 30 ms, 260 vol-
umes, voxel size = 3.4 � 3.4 � 3.4 mm3). High-resolution
T1-weighted structural scans were collected using a
magnetization-prepared rapid gradient echo sequence
(MPRAGE; voxel size = 1 � 1 � 1 mm3).

TAB L E 1 Demographic variables and clinical measures of the participants. Table lists median and interquartile range (IQR) of age,

mRS at scan, mRS at peak of disease, disease duration and time between scan and diagnosis. Treatment and medication during disease

course were evaluated using a binary scale (present: ‘yes’ vs. absent: ‘no’). Disease duration = days in acute care; N = number of

participants; mRS = modified Rankin Scale

NMDAR encephalitis patients Healthy controls

N 73 73

Sex Female/male 62/11 62/11

Age (years) Median ± IQR (N) 28.55 ± 8.7 (73) 28.50 ± 8.5 (73)

mRS at scan Median ± IQR (N) 1.00 ± 1.5 (70) ��
mRS at peak of disease Median ± IQR (N) 4 ± 2 (67) ��
Disease duration (hospitalization time) Median ± IQR (N) 67.50 ± 72.00 (68) ��
Years between disease onset and study Mean ± SD (N) 2.97 ± 2.48 (71) ��
First-line treatment 72/73 ��
Second-line treatment 37/73 ��
Anticonvulsant medication 51/73 ��
Antipsychotic medication 48/73 ��

Abbreviation: NMDAR, anti-N-methyl-aspartate receptor.
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2.3 | MRI data analysis

Prior to preprocessing, framewise displacement (FD) was
calculated for each participant and assessed against a
mean FD cutoff of .50 mm (Eijlers et al., 2019; Power
et al., 2014). No participant had a mean FD greater than
or equal to .50 mm. For preprocessing, we applied the
‘ICA-AROMA+2Phys’-Pipeline proposed by Parkes et al.
(2018) to our data: The pipeline included removal of the
first 4 volumes of each participant’s rs-fMRI scan, volume
realignment, slice-timing correction, detrending of BOLD
time series, intensity normalization, spatial smoothing
with 6 mm full width at half maximum, ICA-AROMA for
head motion correction to robustly remove motion-
induced signal artefacts from the functional MRI data
(Pruim et al., 2015), regression of white matter and cere-
brospinal fluid time series to control for physiological
fluctuations of non-neuronal origin, demeaning and
band-pass filtering to retain frequencies between .008
and .08 Hz.

2.4 | Participant-wise meta-state
estimation and transition network
construction

The following steps were performed with the same
parameters as previously described and evaluated in
Ramirez-Mahaluf et al. (2020). Time-series extraction
was done using a whole-brain parcellation template with
638 similarly sized regions of interests (ROIs) (Crossley
et al., 2013). Extracted functional time series were seg-
mented into 127 consecutive time windows of 2TRs
(≙4.5 s), which yielded reliable results in previous work
(Ramirez-Mahaluf et al., 2020). The comparatively short
window length was necessary to be able to meaningfully
track state transitions across a large number of meta-
states. For each window, FC was estimated between any
two ROIs using Multiplication of Temporal Derivatives, a
method that is suitable to estimate FC across a range of
correlation strengths and (short) window lengths (Shine
et al., 2015). The resulting ROI-by-ROI (638-by-638)
matrices were then Pearson-correlated, resulting in a
127-by-127 similarity matrix of windows. To obtain dis-
crete brain meta-states, MATLAB-inbuilt k-means clus-
tering was applied to the similarity matrix using 10,000
maximum iterations and 2000 replicates with random ini-
tial positions. For each meta-state, all windows belonging
to that state were averaged, yielding a mean ROI-by-ROI
(638-by-638) connectivity matrix. To scrutinize our ana-
lyses across multiple numbers of meta-states, we
extracted k meta-states (k = 35, 40, 45, 50 and 55)

following the range of k in (Ramirez-Mahaluf et al., 2020)
for each participant separately.

Finally, transition networks were constructed for each
participant and k number of meta-states: A transition
network is a graph network, where each meta-state corre-
sponds to a node and transitions between meta-states
represent the edges of that graph. The edges are directed
and weighted according to the number of transitions
from meta-state i to meta-state j (Ramirez-Mahaluf
et al., 2020).

Importantly, this novel approach runs k-means clus-
tering on each individual time series to describe individ-
ual temporal trajectories of meta-state transitions. Hence,
this approach differs fundamentally from the definition
of dynamic FC states across individuals (von
Schwanenflug et al., 2022), which searches for common
patterns of recurring connectivity on a group level.

2.5 | Group comparisons of transition
network properties

From each of the transition networks, we derived three
widely used graph theoretical measures (modularity, local
efficiency and global efficiency), two custom measures that
are thought to capture the biological costs of meta-state
transitions (leap size and immobility) (Ramirez-Mahaluf
et al., 2020), as well as one measure that assesses the
robustness of the network against perturbations. Note
that modularity, local and global efficiency and immobil-
ity were calculated on the transition matrix (matrix con-
taining the number of transitions between each pair of
meta-states) for each participant, whereas leap size was
based on the distance matrix (i.e., 1-correlation for each
meta-state pair). To assess robustness, we employed the
NetSwan package available for R to randomly remove
one node after another from the network and recalculate
the size of the largest connected component
(Achard, 2006; Lynall et al., 2010). A more detailed
description of the graph theoretical metrics is provided in
(Table S1).

In addition, transition frequency, ratio of within-to-
between module meta-state similarity and ratio of within-
to-between module transitions were compared
between patients and controls. Here, a ‘module’ refers
to a group of meta-states assigned to the same
community as defined by the modularity algorithm
(community_louvain.m). Whereas transition frequency is
calculated as the absolute number of transitions
between different meta-states, the ratio of within-to-
between meta-state similarity (ratiosim) is defined as the
average correlation of meta-states within a module

VON SCHWANENFLUG ET AL. 571
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divided by the average correlation of meta-states
between modules. Similarly, the ratio of within-to-
between module transitions (ratiotrans) is the absolute
number of transitions within the same module divided
by the absolute number of transitions between modules.

Between-group comparisons of graph theoretical
measures, transition frequencies, ratiosim, and ratiotrans
were assessed by comparing the area under the curve
(AUC; MATLAB’s trapz) between patients and controls.
The AUC was calculated from k = 35 to k = 55 for each
metric and participant, which allowed us to derive one
inference measure across all number of meta-states. For
each metric separately, the AUC was entered into a
regression model controlling for head motion (FD), age,
and sex as nuisance variables. Group comparisons were
performed on the residuals using a permutation-based t-
test and FDR-corrected using Benjamini-Hochberg
(Benjamini & Hochberg, 1995).

2.6 | Correlation of network properties
with disease severity

Next, we investigated the relationship of transition net-
work properties with disease severity of patients. To this
end, mRS scores at the time of scanning and disease
duration (days in acute care) were z-transformed across
patients and subsequently averaged, resulting in a com-
posite z score for each patient that reflects disease sever-
ity clinical disability. The Pearson’s correlation
coefficient between dynamic network properties and dis-
ease severity was obtained and corrected for multiple
comparisons.

2.7 | Functional network topology of
meta-states

Lastly, each meta-state can be represented by a whole-
brain FC matrix (638-by-638), in which each edge corre-
sponds to the coupling strength between two given brain
regions. Consequently, we sought to evaluate the spatial
differences in functional topology of these edges across
all meta-states. To this end, we quantified how much
each edge differed across meta-states by computing the
distance across meta-states (DAMS), a previously defined
summary measure by Krohn and colleagues (Krohn
et al., 2021), which is defined as the cumulative differ-
ence across a specified state space. Here, this distance
was computed for each edge across all possible meta-state
comparisons given a particular value of k, then normal-
ized over k, and finally averaged over the applied range
of k values. In consequence, we obtain a single distance

measure for each edge and participant, where a high
value of DAMS between any two ROIs indicates that the
connectivity between these regions differs strongly
between meta-states. In contrast, a low DAMS indicates
that the connectivity between these regions is similar
across all meta-states of a transition network. Subse-
quently, group differences for each edge in the distance
matrix were assessed with a two-sample t test and FDR-
corrected for multiple comparisons using Benjamini–
Hochberg (Benjamini & Hochberg, 1995). Finally, the
participant-specific DAMS values were averaged across
participants to obtain the distance matrix shown in
(Figure 4).

3 | RESULTS

3.1 | Group differences in network
properties

Group comparisons of graph theoretical measures yielded
significantly lower local efficiency (t = �2.41,
pFDR = .029, d = .40), higher leap size (t = 2.18,
pFDR = .037, d = .36) and lower robustness (t = �2.01,
pFDR = .048, d = .33) of transition networks in patients
compared with controls. In contrast, modularity
(t = �1.43, pFDR = .12, d = .27), global efficiency
(t = 1.00, pFDR = .20, d = .17) and immobility (t = �.32,
pFDR = .38, d = .05) of transitions networks did not differ
between groups (Figure 1). The transition networks of six
exemplary participants with high and low leap size are
shown in Figure S1.

Correlation of similarity and the number of transi-
tions between two meta-states revealed that transition
frequency was higher between similar meta-states for
both groups and all numbers of meta-states (rho = [.48,
.53, .54, .54, .52] for the different k meta-states; all
p < .001, Figure 2). Accordingly, transitions within mod-
ules were on average 3.4 times more likely than between
modules with a ratiotrans (ratio of within-to-between
module transitions) = [2.40, 2.94, 3.44, 3.89, 4.44]
depending on the number of meta-states. This result was
expected as modularity is calculated on the transition
matrix. Interestingly, however, the ratiotrans was signifi-
cantly lower in patients with NMDAR encephalitis com-
pared to controls (t = �2.48, pFDR = .026, d = .40),
whereas the overall number of transitions between differ-
ent meta-states did not differ between groups (t = .32,
pFDR = .377, d = .05). Similar to ratiotrans, ratiosim (ratio
of within-to-between meta-state similarity) was on aver-
age 3.2 (ratiosim = [2.9, 3.1, 3.2, 3.3, 3.4], for the different
k meta-states). Again, the ratiosim was significantly lower
in patients compared with controls (t = �2.48,

572 VON SCHWANENFLUG ET AL.
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pFDR = .026, d = .41). This suggests that patients transi-
tion between topologically more different meta-states
(from different modules) compared with controls,
whereas the overall transition frequency remains
unaltered.

3.2 | Correlation of network properties
with disease severity

Next, we investigated the relationship of significant graph
metrics, that is, local efficiency, leap size and robustness,
ratiotrans and ratiosim, with a composite z score for disease
severity. Higher disease severity was significantly associ-
ated with higher leap size (Pearson’s r = .37,
pFDR = .0030, Figure 3), decreased robustness (Pearson’s
r = �.37, pFDR = .0030, Figure 3), lower ratiosim
(Pearson’s r = �.40, pFDR = .0030, Figure S3) and lower

F I GURE 1 Between-group comparisons of graph theoretical measures. Coloured dots represent the residuals after nuisance regression.

Black dots and whiskers represent the mean and standard deviation, respectively. HC = healthy controls, NMDAR encephalitis = patients

with anti-NMDA receptor encephalitis. * indicates significant difference pFDR < .05.

F I GURE 2 Correlation between meta-state similarity and

number of transitions between them (here shown for k = 45; see

Figure S2 for k’s = [35, 40, 50, 55]). Meta-state similarity (y-axis)

was estimated calculating Spearman’s ϱ. The regression line is

included for visualization purposes. Number of transitions (x-axis)

are the sum of transitions between any two meta-states,

independent of the direction of transitions.
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ratiotrans (Pearson’s r = �.33, pFDR = .0064, Figure S3)
but not with local efficiency (Pearson’s r = �.11,
pFDR = .35, Figure S3).

3.3 | Functional network topology of
meta-states

The edges with the highest DAMS, that is, edges that
exhibited most pronounced differences in coupling
strength across meta-states, clustered predominantly in
unimodal networks, namely, the sensorimotor and visual
network (Figure 4a). This topological pattern is highly con-
vergent with recent findings from Krohn and colleagues
(Krohn et al., 2021) and is akin across groups (Figure S4).

Whole-brain group comparison yielded no significant
difference in DAMS between groups after correction for

multiple comparison. Therefore, we explored group dif-
ferences in DAMS within each functional RS network
separately. This network-wise group comparison revealed
significant differences between edges within the visual,
default mode and sensorimotor networks (FDR-
corrected, Figure 4b). Remarkably, significant edges
showed higher DAMS in patients within the visual and
sensorimotor network but lower DAMS within the
default-mode network (Table S3).

4 | DISCUSSION

Ongoing brain activity can be described as transient FC
patterns (so-called brain states) that are visited in a struc-
tured, non-random trajectory (Ramirez-Mahaluf
et al., 2020). These brain state dynamics are thought to

F I GURE 3 Correlation between

disease severity (composite z-score) and

altered network properties (residuals

after nuisance regression). Correlation

plots for local efficiency, ratiosim and

ratiotrans are shown in Figure S3. *

indicates significant difference

pFDR < .05.

F I GURE 4 Interregional distance across meta-states (DAMS). (a) The DAMS matrix visualizes interregional differences in coupling

strength across meta-states averaged across all participants. High DAMS values (yellow) indicate strong differences in connectivity strength

across meta-states, whereas low DAMS values (blue) indicate that the connectivity strength between regions is more similar across meta-

states. (b) Brain plots show results from group-comparison within each functional network. Differences in DAMS between patients and

healthy controls were found for edges within the visual, default-mode and sensorimotor network (false discovery rate [FDR]-corrected).

Network assignment of regions is based on the labels proposed by Yeo et al. (2011). Subcortical regions were subsumed as a subcortical

network. VIS = visual network, dATT = dorsal attention network, vATT = ventral attention network, DMN = default mode network,

FPN = fronto-parietal network, SM = sensorimotor network, LIM = limbic network, SC = subcortical network, und. = undefined,

HC = healthy controls, NMDAR encephalitis = patients with anti-NMDA receptor encephalitis.
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facilitate cognition and behaviour and may vary in dis-
ease (Kringelbach & Deco, 2020). In this study, we
employed a time-resolved analysis of brain activity to
capture the spatiotemporal dynamics of brain state tran-
sitions in a large sample of patients with NMDAR
encephalitis. Our results indicate reduced resilience of
state transition networks in patients compared with con-
trols. This manifests in lower local efficiency of the net-
work (fewer transitions from or to neighbouring,
i.e., similar and meta-states), higher leap size (transitions
between more distinct meta-states) and reduced robust-
ness of the patients’ transition networks against random
attacks. Furthermore, the ratio of within-to-between
module transitions and meta-state similarity was signifi-
cantly reduced in patients. Importantly, these state
dynamic metrics were correlated with disease severity,
highlighting the clinical relevance of our findings.

In patients with NMDAR encephalitis, autoantibodies
target the NR1 subunit of the NMDA receptor causing an
internalization of the receptor (Dalmau et al., 2011).
Although this results in a broad range of psychiatric and
neurological symptoms, standard clinical MRI shows no
or only minor abnormalities in most patients (Graus
et al., 2016; Heine et al., 2015). In contrast, FC analyses
were able to identify characteristic connectivity alter-
ations: Static RS FC analyses that average connectivity
across an entire scanning session showed widespread dis-
rupted connectivity in visual, temporal, hippocampal and
mid-frontal areas associated with the severity of cognitive
and psychiatric symptoms (Cai et al., 2020; Finke
et al., 2013; Peer et al., 2017). However, given that brain
activity is inherently dynamic (Chang & Glover, 2010),
models that incorporate spatiotemporal features of con-
nectivity may complement our knowledge about func-
tional disruptions in neuropsychiatric disorders. Indeed,
we recently found that dynamic FC showed a shift in
state preference and transition probabilities in patients
with NMDAR encephalitis that was associated with dis-
ease severity and disease duration (von Schwanenflug
et al., 2022). In the present study, we further expand on
these dynamic FC findings and investigated alterations in
the spatiotemporal trajectory of functional state explora-
tion through the underlying state space. State exploration
is thought to reflect the dynamic repertoire of intrinsic
brain activity that is important for information integra-
tion and mental processes (Deco et al., 2011; Gu
et al., 2017; Lord et al., 2019). Therefore, disruptions in
the temporal organization of state transitions may
account for clinical symptoms in disease (Deco
et al., 2017; Kringelbach & Deco, 2020). In fact, we found
a characteristic spatiotemporal reorganization of the tran-
sition trajectory in patients compared with controls that
was related to disease severity. This spatiotemporal

reorganization—as reflected by lower local efficiency,
lower robustness and higher leap size of the transition
network—may represent overly unstable transition
dynamics in NMDAR encephalitis (von Schwanenflug
et al., 2022) that could be linked to deficiencies in infor-
mation integration (Deco et al., 2017; Lord et al., 2019).

At a scale of seconds to minutes, the human brain
operates through continuously evolving activity that can
be characterized as transient quasi-stable brain states
(Allen et al., 2014; Calhoun et al., 2014). This evolution
of brain activity is non-random, allowing for a systematic
exploration of brain states (Ramirez-Mahaluf
et al., 2020). Analogous to the modular spatial organiza-
tion of the cortex, the temporal trajectory of brain state
transitions shows similar topological properties; that is,
brain states are grouped into modules of similar meta-
states, with higher transition frequencies within a mod-
ule than between modules (see methods and results sec-
tion: ratiotrans/ratiosim). This modular organization is
thought to promote segmented and cost-efficient infor-
mation processing, while enabling the exploration of the
functional repertoire via transitions to meta-states of a
different module (Bassett et al., 2011; Bertolero
et al., 2015; Deco et al., 2017; Sporns & Betzel, 2016;
Tognoli & Kelso, 2014). In line with the modular struc-
ture, transition networks in healthy controls show high
local efficiency and low global efficiency (as compared
with a null model) (Ramirez-Mahaluf et al., 2020).
Although a high local efficiency allows for locally special-
ized functioning, a comparatively smaller number of con-
nections between subsystems of a network, that is, low
global efficiency, still allow for distributed information
processing across different subsystems (Sporns &
Betzel, 2016). Moreover, a high local efficiency enhances
the robustness of a system. By providing alternative path-
ways between two nodes (i.e., meta-states), the system
compensates for potential disturbances and provides sta-
ble representation of information (De Vico Fallani
et al., 2009). Interestingly, the spatiotemporal organiza-
tion of state exploration may also be directly relevant to
behaviour. A recent study on transition networks in a
healthy population suggests that the efficiency of the net-
work is associated with performance in cognition and
motor function (Ramirez-Mahaluf et al., 2020). Thus,
state exploration may vary across diseases potentially
accounting for a multitude of symptoms (Kringelbach &
Deco, 2020).

Indeed, the present study highlights significant differ-
ences in the temporal architecture of transition networks
between patients with NMDAR encephalitis and healthy
controls. We found that patients exhibited decreases in
local efficiency and robustness and increases in leap size.
Decreased local efficiency hints at unstable
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representation of information due to lower redundancy
of the transition network, which is described in more
detail in the previous paragraph. Leap size is thought to
reflect metabolic cost and is measured as the magnitude
of ‘jumps’ between topologically different meta-states.
Eliciting state transitions is energetically costly (Gu
et al., 2017; Lord et al., 2013) and possibly increases when
traversing states that show highly disparate activation
profiles. This intuition is supported by our finding that
(low-cost) transitions between two similar meta-states are
more likely than (cost-intensive) transitions between dis-
tant meta-states. Accordingly, higher leap size in patients
may indicate higher metabolic demand along with higher
volatility of state transitions. Lastly, we evaluated the
robustness of the transition network, which is the ability
of maintaining information processing within the net-
work before collapsing (Aerts et al., 2016). We found that
transition networks of patients with NMDAR encephali-
tis are less robust compared to those of controls when
removing the nodes (i.e., meta-states) one by one.
Together with a decreased local efficiency and higher
leap size, this points to a destabilization and reduced
resilience of transition networks in patients with
NMDAR encephalitis, corroborating earlier findings in
this patient population (von Schwanenflug et al., 2022).
This notion is furthermore supported by decreased ratios
of within-to-between module transitions and within-to-
between module meta-state similarity in patients. In
addition, four out of five network measures—leap size,
robustness, ratiotrans and ratiosim—were correlated with a
composite score of disease severity, supporting clinical
relevance of our findings.

The neural basis for functional brain state transitions
is a matter of ongoing investigation. Neural dynamics
may coordinate whole-brain FC patterns, thereby
enabling the exploration of the brain’s functional reper-
toire (Gu et al., 2017; Kringelbach & Deco, 2020; Lord
et al., 2019). In NMDAR encephalitis, internalization of
the NMDAR alters glutamatergic synaptic transmission,
impacting the coordination between large-scale func-
tional networks. Interestingly, reduced resilience of tran-
sition networks in patients with NMDAR encephalitis is
supported by findings from attractor-based computa-
tional models that postulate that NMDAR dysfunction
may lead to overly unstable attractors in brain activity
(Rolls, 2012, 2021). NMDAR hypofunction, as in NMDAR
encephalitis and schizophrenia, may lead to a flattening
of the attractors (destabilizing effect), facilitating pertur-
bations to provoke transitions between attractors (Loh
et al., 2007; Rolls, 2012).

Finally, our study provides evidence that a subset of
regions preferentially promotes brain state transitions
(Kringelbach & Deco, 2020; Krohn et al., 2021).

Convergent with recent work on brain dynamics, we
found that changes in connectivity across states are most
pronounced in regions of the visual and sensorimotor
areas, potentially following a hierarchy from unimodal to
transmodal networks (Krohn et al., 2021). Interestingly,
in patients with NMDAR encephalitis, connectivity
changes across meta-states within unimodal networks
were even more pronounced, providing a spatial correlate
of the increased temporal volatility in state transitions.
Both the visual and the sensorimotor network have been
reported to show reduced static FC in patients with
NMDAR encephalitis; these effects correlated with dis-
ease severity; that is, they were more pronounced in
more severely affected patients (Peer et al., 2017). Along
with altered FC found in other large-scale functional net-
works (Chen et al., 2022; Finke et al., 2013; Heine
et al., 2015; Peer et al., 2017), these findings reflect the
prominent expression of NMDARs throughout the cortex,
their pathophysiological role in NMDAR encephalitis
and potentially their contribution to the orchestration of
brain dynamics. Limiting state transitions to a defined
number of regions initiating those transitions raise the
intriguing possibility that controlled external stimulation
of these particular regions could be applied to achieve a
rebalancing of state dynamics (Gu et al., 2017;
Kringelbach & Deco, 2020).

Some limitations of our study deserve mentioning:
First, statistical comparison of dynamic metrics revealed
several significant group differences, albeit with moder-
ate effect sizes. Thus, future work should consider acquir-
ing larger samples and potentially examine subgroup
differences in this disease to better characterize the
potential clinical significance of these alterations, with
the ultimate goal of moving beyond group-level effects
and towards individual patients. Second, the window
length of 2 TR (≙4.5 s) is comparatively short and may
decrease the signal-to-noise ratio. However, the size of
this time window has been recognized as a good trade-off
between sensitivity and specificity (Shine et al., 2015).
Furthermore, a high reliability of meta-state estimation
was previously shown using a very similar window
length (Ramirez-Mahaluf et al., 2020). Third, k-means
clustering is applied to each participant separately.
Although this approach poses inherent limitations to
study between-group differences in meta-state topology,
it is particularly suited to investigate individualized tem-
poral dynamics and characteristics of the transition tra-
jectory of functional states. Forth, the applied k enforces
the extraction of a large number of (potentially similar)
meta-states for each participant. While most studies focus
on 3–5 distinct major connectivity states defined on a
group level, this number of states may not be sufficient to
represent the full repertoire of functional configurations
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of the human brain. Furthermore, a small number of
states limit a detailed investigation of individual transi-
tion trajectories between these states, which was the
main purpose of the present study.

5 | CONCLUSION

In this study, we employed a time-resolved graph analyti-
cal framework to study the spatiotemporal trajectory of
brain state transitions in patients with NMDAR encepha-
litis. Besides decreases in local efficiency, we observed
reduced robustness of the patients’ transition networks
against random attacks compared with those of healthy
controls. Together with higher leap size in patients, these
findings show reduced resilience of functional state tran-
sitions in patients, that is, related to disease severity.
Hence, our findings add to the evidence that disturbance
of functional brain network dynamics plays a key role in
the pathophysiology of NMDAR encephalitis.
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