
NEUROSC I ENCE

A spatiotemporal complexity architecture of human
brain activity
Stephan Krohn1,2*, Nina von Schwanenflug1,2†, Leonhard Waschke3,4†, Amy Romanello1,2,
Martin Gell2,5,6, Douglas D. Garrett3,4, Carsten Finke1,2*

The human brain operates in large-scale functional networks. These networks are an expression of temporally
correlated activity across brain regions, but how global network properties relate to the neural dynamics of
individual regions remains incompletely understood. Here, we show that the brain’s network architecture is
tightly linked to critical episodes of neural regularity, visible as spontaneous “complexity drops” in functional
magnetic resonance imaging signals. These episodes closely explain functional connectivity strength between
regions, subserve the propagation of neural activity patterns, and reflect interindividual differences in age and
behavior. Furthermore, complexity drops define neural activity states that dynamically shape the connectivity
strength, topological configuration, and hierarchy of brain networks and comprehensively explain known struc-
ture-function relationships within the brain. These findings delineate a principled complexity architecture of
neural activity—a human “complexome” that underpins the brain’s functional network organization.
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INTRODUCTION
The human brain operates in large-scale functional networks that
underpin cognition and behavior (1–7). Collectively subsumed as
the functional human connectome (8, 9), these networks are an ex-
pression of temporally correlated activity across spatially distributed
brain regions. This covariance of neural signals is commonly re-
ferred to as functional connectivity (FC) (10–12), and the estima-
tion of FC from functional magnetic resonance imaging (fMRI)
has revealed important insights into the brain’s functional architec-
ture. First, FC is not uniformly distributed across the brain, but
rather organized in functional subsystems known as resting-state
networks (RSNs) (2, 5–7, 13). Second, FC is not static over time
but shows dynamic fluctuations that result in distinct temporal
network states (14–18). Third, the configuration of the network is
not random, but follows an efficient topology thought to reflect
communicational constellations within the network (18–21). Last,
brain networks are not functionally uniform, but are organized
along a principal hierarchy spanning from lower-order unimodal
to higher-order transmodal processing systems (22–24).
Despite these advances, it remains a fundamental challenge in

neuroscience to understand what determines the structure, tempo-
ral dynamics, and hierarchy within the human connectome. To
achieve such an understanding, an explanatory framework is re-
quired which links this global network architecture to the local ac-
tivity of individual brain regions. Such a link is critical because
FC—and all network properties derived from it—are defined on

the covariance relationship across regional signals. Given this direc-
tionality of network construction (regional activity defines interre-
gional covariance, but not vice versa), the global properties of the
network must ultimately be rooted in the neural dynamics of indi-
vidual regions. To this effect, the variability of neural activity fluc-
tuations gives rise to the covariance structure that defines the
network (6, 25–28), but how the global network architecture
relates to the variability of local neural activity remains incompletely
understood.

RESULTS
Brain activity is characterized by critical moments of neural
regularity
To address this gap, we here use an information-theoretic complex-
ity analysis that (i) relates the local activity of individual brain
regions to the global properties of the network, (ii) represents the
intrinsic variability of neural fluctuations in a standardized space,
and (iii) allows for a time-resolved account of neural variability to
capture the temporal dynamics within individual signals. This ap-
proach rests on symbolic encoding of blood oxygen level–depen-
dent (BOLD) activity and leverages both amplitude information
and the diversity of abstract patterns in the signal to quantify the
degree of irregularity (i.e., signal complexity) over a given
moment in time (figs. S1 and S2) (29). We thus obtain a complexity
time series for each brain region, which captures local dynamics
through a meta-representation of neural variability and allows for
a link between the nodes in the network (i.e., individual regions)
and the edges in the network (i.e., region-to-region functional
connections).
Application of this approach to resting-state fMRI from the

Human Connectome Project (HCP) (8) revealed a highly canonical
complexity architecture of human brain activity: Over ~80% of the
acquisition time, the brain exhibits widespread high-complexity
signals, approaching the upper limit of expected values given the
underlying signal characteristics (figs. S1 to S3). Intermittently,
however, this high-complexity activity is interrupted by
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spontaneous “complexity drops” that correspond to episodes of in-
creased regularity in the BOLD signal (Fig. 1A). Specifically, “regu-
larity” here means that there are moments in the signal in which a
dominant symbolic motif explains most of the relative amplitude
variation in the time series, which is demonstrated for an exemplary
BOLD window in the inset of Fig. 1A. Here, the relative amplitude
variation in the exemplary thalamic region (top row) is largely split
between an “upward” motif (1-2-3) and a “downward” motif (3-2-
1). In contrast, in the left precuneus (bottom row), nearly all ampli-
tude variance over the given window is attributed to the downward
motif, resulting in a highly regular pattern distribution and thus in a
drop in complexity over this window.
These complexity drops appear in clusters of brain regions and

over well-delineated moments in time, and the number of brain
regions exhibiting drops closely reflects the current overall complex-
ity of neural activity. Notably, this complexity architecture was uni-
versally present in all analyzed recordings (684 scans from n = 343
participants; also see online repository for individual scans and val-
idation in holdout data) and was highly robust against different win-
dowing parameters, parcellation granularity, and time series
extraction methods (figs. S4 and S5).
Spatial analysis revealed persistent high-complexity activity in

medial temporal, anterior cingulate, and subcortical regions—
most markedly in thalamic areas (Fig. 1B). In contrast, complexity
drops predominantly occurred in the cortex, with a focus on peri-
central regions. On the level of individual participants, the affinity
for complexity drops was strongly linked to grand-average brain
signal complexity (r = −0.9, P = 1.6 × 10−125) and showed signifi-
cant differences across RSN [χ2(7) = 154, P = 6.1 × 10−30] as well as

gradual decreases with age [χ2(2) = 17.1, P = 1.9 × 10−4], even over
the narrow age range of early adulthood (Fig. 1B).
This time-resolved representation of BOLD dynamics subse-

quently allowed us to relate the complexity time series of individual
regions to the FC between those regions. Analyzing the co-occur-
rence of complexity drops across the brain revealed that FC strength
between any two regions is strongly associated with the degree to
which they exhibit complexity drops together (Fig. 1C). While
this “drop coincidence” explained a large part of the variance in
FC overall (F1,30133 = 4.3 × 104, P ≈ 0, R2adj = 0.59), it was also sig-
nificantly higher for connections within, rather than across, canon-
ical RSNs (W = 3.6 × 107, P = 9.3 × 10−161), paralleled by higher
within- than across-network connectivity.
A further link to such network differentiation is demonstrated

by the interhemispheric symmetry of regional complexity time
series (Fig. 1D), quantified as the rank-weighted correlation of
each region with its contralateral equivalent. This interhemispheric
symmetry was systematically constrained by canonical RSNs
[χ2(7) = 169, P = 4.6 × 10−33] and intrinsically mirrored the recently
uncovered hierarchy between unimodal and transmodal areas (22,
23), suggesting that the cross-hemispheric coupling of neural activ-
ity patterns is strongest in primary networks and becomes gradually
more diverse in higher-order systems.
Notably, these complexity dynamics are not simply explained by

covariation in signal amplitudes across regions and are specifically
distinct from BOLD cofluctuations as defined by the recently re-
ported edge time series (fig. S6) (30, 31). Instead, associations
between complexity dynamics and BOLD cofluctuations are consis-
tently small to near zero, both in the case of continuous time series

Fig. 1. Human brain activity is characterized by critical moments of neural regularity that are visible as transient complexity drops. (A) Time-resolvedWPE on the
neural signals from each ROI in an exemplary resting-state recording (Brainnetomeparcellation; window length of 60 TRs, 95% overlap). The inset displays the BOLD
correlates of two representative high- and low-complexity signals. (B) Spatial distribution of average signal complexity. Drop affinity over RSNs, link to grand-average
signal complexity, and age-related reduction in drop affinity. (C) FC as a function of drop coincidence, within and across canonical RSNs. (D) Spatial topology and network
distribution of interhemispheric complexity symmetry. dATT, dorsal attention; DMN, default mode; FP, frontoparietal; LIM, limbic; SMN, somatomotor; SUB, subcortical;
vATT, ventral attention; VIS, visual network.
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(BOLD cofluctuation amplitude versus complexity cofluctuation
amplitude) and in the case of event time series (high-amplitude
BOLD cofluctuation events versus drop coincidences).
Similarly, a null model of temporal dependency that preserves

signal means, amplitude variance, and FC (32) showed a pro-
nounced disruption of both the spatiotemporal organization of
signal complexity across the brain and of interindividual differences
across participants (fig. S7). In particular, we observed a dissolution
of the spatial complexity topology in Fig. 1B (left), the individual
affinity for complexity drops including the age effect (Fig. 1B,
right), and the propensity of brain regions to drop together at the
same time (Fig. 1C), even when the absolute number of complexity
drops in the surrogate data was enforced to be the same.

Moments of regularity spread throughout the brain
Recent work has suggested a propagation of BOLD activity patterns
throughout the brain as a means of communication within the
network (33–35). As the symbolic encoding approach used here in-
herently captures such neural patterns (29), we asked whether com-
plexity drops may reflect the propagation of neural activity across
the brain. Supporting this idea, complexity drops consistently oc-
curred in dynamic cascades that start with a few initializing
regions, gradually spread across the brain, and finally fade back to
a few regions again such that brain-wide drop engagement exhibits
an inverted U-shape over time (Fig. 2A and movie S1). Such cas-
cades were present in all 343 participants and typically lasted for
about 10 s (mean duration, 9.4 ± 3.5 s; range, 6.5 to 41 s). To
analyze the spread of complexity drops across the brain, we

developed a graph theoretical framework, where each individual
propagation is described by a directed graph (Fig. 2B). These prop-
agation graphs contain node layers that represent consecutive
BOLD windows from initialization of the cascade (“source layer”)
to maximum drop engagement (“peak layer”), and where the direc-
tion of edges expresses progression in time, allowing for the estima-
tion of region-to-region transition probabilities within the
propagation.
Drop cascades were characterized by a strong positive relation-

ship between cascade duration and the number of regions engaging
in them (ρ = 0.79, Padj = 2.9 × 10−73), and the number of cascades an
individual presented was strongly related to their source diversity,
defined as the proportion of unique brain regions ever initializing a
cascade (ρ = 0.96, Padj = 2 × 10−182; Fig. 2C). Notably, we observed
significant age-related reductions in the number of cascades
[χ2(2) = 13.9, P = 9.5 × 10−4] and in source diversity [χ2(2) = 16.3,
P = 2.8 × 10−4], but not in the number of regions dropping
[χ2(2) = 4.5, P = 0.11] or cascade duration [χ2(2) = 2.6, P = 0.27],
suggesting that individual propagations occur in a semicanonical
fashion, although the predisposition to engage in them decreases
with age (Fig. 2C).
Spatial analysis of propagation graphs revealed that drop cas-

cades originate predominantly in the cortex, with a focus on
lower-order RSNs (Fig. 2D). Furthermore, graph construction
from the transition probabilities of individual spreads uncovered
a highly structured spatiotemporal propagation network (Fig. 2E).
Centrality analysis on this network revealed that the propagation of
complexity drops across regions follows an intrinsic hierarchy

Fig. 2. Complexity drops spread throughout the brain along a principal functional hierarchy. (A) Drop cascades. Points represent a random sample of 500 out of
5279 total cascades in the study population. Cascades are thresholded to at least 10 regions dropping simultaneously at peak. (B) Formalization of individual spreads as
directed propagation graphs. Window-to-window temporal resolution corresponds to 2.16 s (3 TRs). (C) Propagation properties and age effects (pairwise tests FDR-cor-
rected). (D) Spatial topology of cascade origination. (E) Propagation network, thresholded to the 95th percentile of strongest connections (edge thickness: transition
probability; node diameter: source probability). (F) Hub topology of the thresholded propagation network, given by Kleinberg’s eigenvector centrality. FP and DMN are
omitted because of near-zero entries only. (G) Average node-to-node geodesic distances in the propagation network. Monte Carlo simulation testing the significance of
unimodal versus transmodal network clusters. Association between geodesic distances and structural connectivity. PSCI, probabilistic streamline connectivity index.
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(Fig. 2F), where the most influential nodes correspond to primary
RSNs, and nodes of higher-order systems become gradually less im-
portant to the propagation.
Further supporting such a propagation hierarchy from lower-

order to higher-order systems, geodesic distances between all
node pairs in the propagation network were calculated to describe
how likely it is for a complexity drop to spread from one region to
another. These geodesics showed that complexity drops spread
along spatiotemporal pathways that exhibit a unimodal-to-transmo-
dal functional gradient (Fig. 2G), assessed by Monte Carlo simula-
tion of the cluster groups (xcluster = 0.34, P = 0.006; seeMaterials and
Methods for test details). This propagation structure thus again
strongly converged with the functional hierarchy within the con-
nectome (22–24), characterized by a principal gradient between
lower-order unimodal and higher-order transmodal process-
ing systems.
Given this link between drop propagations and functional net-

works, we furthermore asked whether the spread of complexity
drops from one region to another was additionally constrained by
the structural connectivity between them. In line with this idea,
modeling geodesic distances as a function of probabilistic stream-
line connectivity and the number of structural links (R2adj = 0.66,
F2,18 = 20.9, P = 2 × 10−5) significantly improved explanatory
power (ΔR2 = 0.3, η2partial = 0.5, F1,18 = 17.8, P = 5.1 × 10−4) com-
pared to when only the number of links was considered (R2adj = 0.37,
F1,19 = 12.7, P = 0.002), suggesting that drop propagation across
regions is further constrained by structural connectivity.

Neural activity is organized in network-modulating
complexity states
Next, we related the complexity dynamics of individual regions to
the behavior of the whole-brain network, testing the idea that tem-
poral network states (14, 15, 18) (i.e., functional states of the edges)
are rooted in underlying activity states of the neural signals from
which the network is estimated (i.e., functional states of the
nodes). Unsupervised structure detection with k-means clustering
on the complexity time series supported this idea, showing that
neural signals are organized in distinct temporal complexity states
(Fig. 3A; see Materials and Methods for parameter details). Consis-
tent with the inspection of individual time series (Fig. 1A; online
repository), participants spent most time in a default neural state
of high complexity, while the more infrequently visited states en-
tailed gradually decreasing levels of complexity, yielding a strong
discriminative effect of complexity across temporal states
(η2 = 0.90, [0.89 to 0.91]). Notably, while complexity states are
derived directly from the activity of individual brain regions, they
resulted in pronounced concomitant effects on the connectivity
strength and topological configuration of the connectome, which
are derived from region-to-region signal correlations. In particular,
the default state of neural activity is characterized by low connectiv-
ity strength of the network, while the lower-complexity states entail
gradual increases in connectivity (Fig. 3A).
This impact of complexity states furthermore extended to the to-

pological configuration of the connectome (3, 19, 20), with the
default neural state yielding high modularity and low efficiency in
the network. As for FC, visiting lower-complexity states entailed
gradual decreases in modularity and concomitant increases in
network efficiency. Notably, this network-modulating effect of
complexity states even held at the temporal resolution of individual

window-to-window transitions (Fig. 3B). While all complexity
states were similarly stable, switches between low-complexity and
high-complexity brain states typically occurred through the inter-
mediate states, and these transitions were accompanied by fine-
grained, momentary changes in the connectivity, modularity, and
efficiency of the network.
Given these group-level effects of complexity states on the ne

twork, we furthermore tested how much the space of possible com-
plexity states was explored by individual participants (Fig. 3C). To
this end, we derived a measure of state exploration based on the
Wasserstein distance between an individual’s empirical state visits
and a theoretical uniform distribution. This state dispersion
index (SDI) was consistent across two consecutive days of
scanning (ρ = 0.51, P ≈ 0) and significantly decreased with age
[χ2(2) = 12.8, P = 0.002], suggesting that older participants present
increasingly rigid neural dynamics, consistent with the age-related
reductions in drop affinity (Fig. 1B) and propagation diversity
(Fig. 2C). Notably, all state-related findings were highly robust
against the number of expected complexity states as defined by
the clustering parameters (figs. S8 and S9).

Complexity states link structural and functional network
hierarchies
Next, we analyzed how these neural complexity states are spatially
embedded in the brain. Given that both interhemispheric signal
coupling (Fig. 1D) and the propagation of complexity drops
(Fig. 2, E to G) intrinsically followed the principal unimodal-to-
transmodal hierarchy, we explicitly estimated the corresponding
gradient loadings from the FC data and related them to the topology
of complexity states. Furthermore, these gradient loadings have
been shown to be spatially correlated with cortical myeloarchitec-
ture as a proxy of anatomical hierarchy (22, 36, 37), yielding an im-
portant structure-function relationship within the connectome (38)
that also partly extends to nonprimate mammalian brains (39, 40).
Thus, we estimated cortical myelination as the T1-weighted/T2-
weighted image ratio and related this myelin distribution to the
functional gradient loadings and complexity states.
The topology of complexity states corroborated the distribution

of average signal complexity (Fig. 1B), with subcortical areas consis-
tently showing high-complexity activity, largely independent of the
current global complexity state (Fig. 4A). In contrast, cortical topol-
ogies varied distinctly with the number of regions exhibiting com-
plexity drops [χ2(3) = 1172, P = 9.4 × 10−254], inducing significant
spatial heterogeneity across states [modified likelihood ratio test
(MLRT) = 655, P ≈ 0]. Furthermore, note that the topologies in
Fig. 4A correspond to within-state z scores and thus represent the
relative regional complexity distribution in each state. In contrast,
fig. S10 depicts the absolute complexity values over states, regions,
and participants, showing that the identified states are distinct—in
line with the significant differences in complexity drops over states
(Fig. 4A, right)—even when the within-state topologies show
similar patterns (e.g., states 3 and 4).
To estimate which brain regions may drive these differences, we

defined a measure of distance across complexity states (DACS) as
the cumulative centroid-to-centroid Euclidean distance for every
region across four-dimensional state space (Fig. 4B). Again, the
DACS topology closely followed a unimodal-to-transmodal gradi-
ent, where regions that were most variable across complexity states
represented the unimodal end of the hierarchy. Testing this spatial
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convergence with spin permutation correlation uncovered a pro-
nounced positive association of DACS topology with cortical mye-
loarchitecture (ρempirical = 0.67, Pspin < 0.001) as well as a strong
negative relationship with the connectivity gradient (ρempirical-
= −0.76, Pspin < 0.001; Fig. 4C).
While we were able to replicate the previously reported link

between myelination and the FC gradient (36) (ρempirical = −0.52,
Pspin < 0.001), partial correlations of all three variables revealed
that the association between myelin and the gradient loadings dis-
appears when controlling for complexity, whereas the complexity-
myelin and complexity-gradient relationships persist when control-
ling for the respective other variable (Fig. 4D). Further corroborat-
ing this finding, a hierarchical regression approach showed that the
complexity topology alone explained a large part of the variance in
gradient loadings (R2adj = 0.57, P = 4.9 × 10−40) and that accounting
for complexity in the augmented model completely resolves the
myelin-gradient effect (Fig. 4D).

Complexity states reflect structure-function coupling in
brain networks
Given the explanatory power of complexity states in accounting for
structure-function relationships, we furthermore related the spatial
embedding of Fig. 4B to a recent method by Preti and Van De Ville
(41) that quantifies how strongly structure and function are coupled
in a given brain region. Specifically, this structure-function decou-
pling index (SFDI) measures the dependency of a brain region’s ac-
tivity on anatomical connections by projecting the functional
signals onto structural-connectome harmonics (41). Figure 5A il-
lustrates this approach and shows the spatial distribution of struc-
ture-function coupling over regions, as computed from our dataset.
This topology closely replicates the spatial distribution found by

Preti and Van De Ville, with stronger structure-function coupling
in sensory-motor regions and lower structure-function coupling in
higher-cognitive areas. Furthermore, relating this distribution to the
spatial topology of complexity states revealed a multimodal gradient
of macroscale cortical organization (Fig. 5B) that links structural
connectivity, FC, and local neural dynamics. In this gradient, one
end comprises regions that show many complexity drops, are
highly variable over complexity states, represent the unimodal end
of the functional hierarchy, and show high structure-function cou-
pling. In contrast, the opposing end includes regions that show
fewer complexity drops, are less variable over complexity states, rep-
resent the transmodal pole of the functional hierarchy, and show
lower structure-function coupling.

Complexity dynamics are highly consistent in holdout data
Validation analyses in holdout data from the same participants
showed that the distribution of signal complexity was remarkably
consistent compared to the main analyses (see fig. S11 for a quan-
tile-quantile plot), yielding almost identical drop thresholds
(Fig. 6A). Despite being highly dynamic metrics, the affinity of in-
dividual participants for complexity drops as well as their mean
signal complexity were strongly correlated in main and holdout
data (Fig. 6B). Moreover, independent clustering on the holdout
data closely corroborated the distribution of neural complexity
states, yielding a dominant high-complexity state and gradually
more infrequent lower-complexity states (Fig. 6C), as in the main
analyses. Furthermore, the degree to which complexity states were
explored by participants (measured by the SDI) as well as the spatial
embedding of complexity states in the brain (measured by the
DACS) were also highly consistent in holdout data (Fig. 6D).

Fig. 3. Neural activity is organized in temporal complexity states that modulate network strength and configuration. (A) State-wise distributions of occupancy,
signal complexity, connectivity strength, networkmodularity, and global efficiency. Points represent participants (n = 343). Node-wise derivation refers to estimation from
individual regional signals, and edge-wise derivation refers to estimation from the network (i.e., region-to-region correlations). (B) Window-to-window state transition
frequencies. State-dependent changes tested against deviation from zero (t test, PFDR < 0.05 for all except those marked by #). Association of network measures with
ΔWPE corresponds to the correlation of the respective matrices. (C) Illustration, consistency across two consecutive days, and age-related reduction of the state dispersion
index (SDI).
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Complexity-behavior associations
Last, we investigated the behavioral implications of the observed
complexity dynamics, given that neural variability is increasingly
recognized to carry important functional significance (28, 42). On
the basis of the age-related reduction in drop affinity (Fig. 1B) and
the link between complexity drops and functional integration
(Fig. 3, A and B), we expected lower complexity values to reflect
better behavioral performance and lower age. To test this relation-
ship, participant age and behavioral variables were subjected to a
multivariate partial least squares (PLS) analysis, including compos-
ite scores of crystallized and fluid abilities and the first principal
components of individual cognitive, motor, and sensory task per-
formance metrics (fig. S12). Furthermore, we conducted these anal-
yses separately for the main dataset and the holdout data (Fig. 7) as
well as individual scanning sessions (fig. S13) to estimate the con-
sistency of behavioral effects. PLS returned a significant latent sol-
ution on the relationship between variance in complexity and
differences in behavior (permuted P value for main data: P = 0;
holdout data: P = 0.001). Supporting directional expectations,
latent brain scores were positively related to latent behavioral
scores (main: ρ = 0.28; holdout: ρ = 0.24), and in this latent
space, neural complexity was positively linked to age and negatively
associated with fluid and crystallized abilities, cognitive task perfor-
mance, and motor function, with high consistency across main and
holdout data (Fig. 7, A and C). Furthermore, the associated
bootstrap ratios (BSRs) showed that complexity-behavior associa-
tions were systematically constrained by functional networks
[main: χ2(7) = 95.4, P = 9.5 × 10−18; holdout: χ2(7) = 84.1,
P = 2 × 10−15], with strongest contributions by areas pertaining to
the ventral attention and default mode network, and this effect was
equivalently observed for main and holdout data (Fig. 7, B and D).
While complexity-behavior associations were thus remarkably

consistent across main and holdout data (where signal complexity
was averaged over two scanning sessions, respectively), these find-
ings also held at the level of individual scanning sessions, both in
terms of age and behavioral effects and in terms of the spatial dis-
tribution of BSRs (fig. S13).

DISCUSSION
Collectively, these findings delineate a unifying principle of brain
organization, grounded in a spatiotemporal complexity architecture
of neural activity. This human “complexome” closes the gap
between the variability of neural signals and several key properties
of functional brain networks, with five immediate implications for
our understanding of large-scale brain dynamics.
First, we show that resting-state brain activity is characterized by

critical moments of neural regularity. Through time-resolved repre-
sentation of regional BOLD dynamics, these episodes become
visible as transient complexity drops that are ubiquitously observed
across scanning sessions, participants, and a variety of methodolog-
ical parameters. Notably, complexity drops occur spontaneously,
are highly orchestrated over both time and space, and closely
explain the connectivity strength of functional connections as the
degree to which brain regions exhibit them simultaneously. In ad-
dition, simultaneous complexity drops strongly differentiate
between connections within and connections across canonical
RSNs, suggesting that functional subsystems are an expression of
specific sets of regions dropping together particularly often.
While these findings align well with the notion that functional con-
nections are related to critical moments of neural activity (17, 30,
43), they also characterize FC as a graded rather than an exclusively
event-like process (44). Although we find that regions show signifi-
cant preference for dropping together with regions of their own

Fig. 4. The spatial embedding of complexity states comprehensively explains structure-function relationships within the brain. (A) Spatial topology of centroid
locations (within-state z scores). Coefficient of variation (CoV) over regions and average number of complexity drops per state (error bars: SD). (B) Spatial topology and
network distribution of the distance across complexity states (DACS). (C) Average regionalmyelination (proxied by T1-weighted/T2-weighted image ratio) and the primary
unimodal-to-transmodal FC gradient. Correlation to the DACS assessed by spin permutation tests. (D) Partial correlation between complexity, myelin, and the connectivity
gradient. Hierarchical regression on the gradient loadings with myelin content and the DACS as explanatory variables. All pairwise tests were FDR-corrected.
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canonical network, there is also substantial drop coincidence
among regions that are traditionally assigned to distinct functional
networks (13), supporting the idea that brain regions can dynami-
cally participate in different functional communities at different
times (45, 46). Notably, these complexity dynamics were markedly
distinct from BOLD cofluctuations as defined by the recently re-
ported edge time series (30) and were dissolved in a null model
that explicitly preserved the covariance structure across regions
(i.e., the FC matrix). This illustrates that the empirically observed
link between connectivity and complexity is not a theoretical neces-
sity—complexity drops can explain covariance, but covariance
alone cannot explain complexity drops. Instead, our approach
rather uncovers a unique perspective on neural dynamics by de-
scribing brain activity through the information-theoretic notion
of complexity (47).
Second, we show that complexity drops link two key phenomena

of human brain activity: the dynamic propagation of neural patterns
and the functional hierarchy of large-scale brain networks. While
we observe that complexity drops can generally start anywhere in
the brain, they consistently spread across the cortex along highly
structured spatiotemporal propagation pathways. These propaga-
tion pathways intrinsically exhibit a principal hierarchy between un-
imodal systems that are central to the propagation and transmodal
systems that are less central to the propagation and tend to be their
end points. Given that pattern propagation is thought to represent
interregional communication (35, 48), our results suggest that such
large-scale communication across brain networks may itself be hi-
erarchical in nature, consistent with computational theories on in-
formation processing in the brain (49) and a recent framework on

bidirectional information flow among brain regions (50). Further-
more, recent work has reported global arousal waves that similarly
propagate from extrinsic, sensorimotor brain systems to intrinsic,
higher-order systems, presumably reflecting spatiotemporal pat-
terns of brain-wide excitability (51). Although these reports were
based on phase characteristics of the signal rather than ampli-
tude-weighted neural patterns, the similarity of propagational path-
ways raises the possibility that moments of regularity could be
linked to arousal-related states of excitability. Notably, the propaga-
tion of complexity drops also aligns well with the recently reported
activity pulses in disused motor circuits (52), which likewise oc-
curred spontaneously and intrinsically spread through the motor
network. Our results suggest that these pulses may represent an
adaptive enhancement of a preexisting phenomenon—the
dynamic propagation of regularity throughout the brain. Given
our finding that these propagations inherently follow a principal
functional hierarchy, such episodes may not be limited to impair-
ment-induced plasticity (52) but rather represent a more general
mechanism by which the brain repeatedly and intrinsically self-
maintains its functional architecture.
Third, we show that complexity drops define temporal states of

neural activity and that these neural complexity states dynamically
modulate the connectivity strength and topological configuration of
the network in a moment-by-moment fashion. Given the direction-
ality of network construction—the covariance across neural signals
is what defines the network in the first place—it is expected that
local activity states should underlie the temporal states of the
global network. In this regard, we find that the more infrequent
low-complexity states yield a network constellation of high connec-
tivity, low modularity, and high efficiency, consistent with previous
findings on network topology dynamics (18, 21). In particular, we
not only corroborate the observation of temporary increases in
network efficiency by Zalesky et al. (18) but also relate these increas-
es to local neural dynamics by showing that they correspond to
moments in which many regions drop at the same time.
In contrast, we found the default state of neural activity to be a

high-complexity state with precisely the inverse network configura-
tion (i.e., low connectivity, low efficiency, and high modularity).
Notably, modularity and efficiency represent two complementary
network characteristics, where the former describes a segregated
configuration thought to reduce biological cost and the latter
implies an integrated configuration that enhances communication
within the network (3). The brain must balance both, however,
yielding a cost-efficiency trade-off that is continuously renegotiated
(20). Consequently, our findings indicate that the brain may imple-
ment such a trade-off with a default neural state of segregated activ-
ity that maintains cost-effectiveness, while the more infrequent low-
complexity states ensure recurrent phases of functional integration.
Fourth, we show that the spatial embedding of complexity states

comprehensively explains a well-established structure-function re-
lationship in the brain (38): the association between connectivity
gradient loadings as a proxy of functional hierarchy (22, 23) and
cortical myelination as a proxy of anatomical hierarchy (22, 36,
53). Notably, accounting for complexity states completely absorbed
this effect, whereas the complexity-myelin and complexity-gradient
relationships persisted, showing that local anatomical properties
and distributed functional properties of the brain are linked
through local functional dynamics. Similarly, the association
between a brain region’s complexity dynamics and the degree to

Fig. 5. Complexity states reflect structure-function coupling in brain net-
works. (A) Illustration of the SFDI defined by Preti and Van De Ville (41). The
brain map on the right corresponds to the SFDI values computed from our
dataset, displayed as the binary logarithm as in (41). Note that the SFDI measures
decoupling such that negative values reflect higher structure-function coupling
and positive values represent lower structure-function coupling. (B) Association
between structure-function coupling and the DACS from Fig. 4B. Points represent
brain regions and are colored according to the FC gradient loadings from Fig. 4C,
reflecting the unimodal-versus-transmodal hierarchy. Significance of the empirical
correlation was tested with spin permutation.

Krohn et al., Sci. Adv. 9, eabq3851 (2023) 1 February 2023 7 of 17

SC I ENCE ADVANCES | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org on February 02, 2023



which it exhibits structure-function coupling (41) revealed a multi-
modal gradient of cortical organization that links structural connec-
tivity, FC, and local neural variability.
Last, we show that the observed complexity dynamics carry a

number of interindividual functional implications that were
robust across the main dataset, the holdout dataset, and individual
scanning sessions. On the one hand, we find several pronounced
effects of participant age, including age-related reductions in (i)
the affinity for complexity drops, (ii) the magnitude and diversity
in how complexity drops are propagated throughout the brain,
and (iii) the degree to which participants explore the space of
neural complexity states. These findings suggest that neural dynam-
ics grow increasingly more rigid with age, even over the narrow age
range of early adulthood (22 to 35 years). On the other hand, these
age effects are paralleled by an inverse association between brain
signal complexity and indices of cognitive and motor performance,
with strongest contributions by areas pertaining to the ventral atten-
tion network. Given that (i) an individual’s drop affinity strongly
relates to overall signal complexity and age, (ii) complexity drops
are tightly linked to phases of functional integration, and (iii) the
ventral attention network is thought to act as an intermediary
system for switching between networks, these results suggest that
a higher capacity for complexity drops may represent a beneficial
aspect of brain functioning.

Technical considerations
Some methodological considerations regarding the quantification
of signal complexity from fMRI data deserve mentioning. On the
one hand, the HCP data were acquired with a comparatively short
time of repetition (TR = 0.72 s), yielding a subsecond temporal res-
olution that is not necessarily achieved in traditional protocols.
While this acquisition was ideal for our approach of time-resolved
complexity analysis, further work is necessary to understand how
the rate at which brain activity is sampled may relate to the estima-
tion of neural patterns from those samples.
Furthermore, the spatial distribution of signal complexity re-

vealed consistent high-complexity activity in medial temporal and
subcortical areas, whose time series typically show lower signal-to-
noise ratios (SNRs) in fMRI recordings. While an influence of SNR
on complexity estimation cannot be completely discarded, several
considerations indicate that high signal complexity in these areas
may not solely be an artifact of SNR. First, even across brain areas
that are less prone to low SNR, high-complexity signals are by far
the dominant part of the resting-state scan—their mean complexity
is simply lower because they show more complexity drops. Con-
versely, complexity drops in high-complexity areas do occur consis-
tently, just comparatively less often than in the rest of the brain.
Furthermore, note that weighted permutation entropy (WPE)
factors in the relative, not the absolute, amplitude variation (and
is thus invariant to linear transformations), making it less prone
to variations in SNR, which is commonly defined on absolute

Fig. 6. Complexity measures are highly consistent in holdout data. (A) Distribution of time-resolved BOLD signal complexity in main and holdout data, resulting in
nearly identical drop thresholds. (B) Consistency of participant-wise affinity for complexity drops andmean signal complexity (see Fig. 1B). (C) State occupancy and state-
wise signal complexity derived from independent clustering of neural complexity states in holdout data (see Fig. 3A). Error bars represent SD. (D) Consistency of com-
plexity state exploration as measured by the SDI (see Fig. 3C) and the spatial embedding of complexity states as measured by the DACS (see Fig. 4B).
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amplitude magnitude. Notably, WPE was explicitly shown to be less
sensitive to lower SNR than preceding measures when it was first
proposed (29). Nonetheless, a systematic evaluation of the relation-
ship between SNR and complexity estimation is certainly worth-
while, as the approach is further explored.
Last, given that complexity drops were ubiquitously present

across participants and a range of methodological parameters, we
investigated whether the empirically observed complexity dynamics
would also be present in a null model of temporal dependency that
preserves the FC structure across regions, and we observed a pro-
nounced attenuation of spatial, temporal, and interindividual com-
plexity effects in the surrogate data.While the temporal dependency
of neural variability was precisely the focus of the current study,
there is increasing interest in the question of which null model to
define under different analytic approaches (32, 54) such that it will
be interesting to see how the empirical complexity dynamics may
relate to other surrogate approaches incorporating different proper-
ties such as (higher-order) autocorrelation structures.

Future directions
Overall, the findings of this study lay out a coherent general frame-
work that maps regional neural dynamics to functional brain net-
works, with some key future questions readily following. First, the
age effects observed in young adults raise the question of how com-
plexity dynamics develop over the larger life span, including
infancy, adolescence, and late adulthood. Similarly, the

complexome provides a principled normative account to describe
brain activity, with immediate opportunities to study clinical pop-
ulations and altered mental states. Moreover, the present study
focuses on resting-state brain activity as assessed by fMRI, warrant-
ing further study on how complexity dynamics change during cog-
nitive task engagement and what the correlates of complexity drops
are in electrophysiological recordings with higher temporal resolu-
tion. Furthermore, complexity dynamics were highly stable within
participants, raising the question of how these dynamics relate to
individual functional “fingerprints” (55, 56) and precision
mapping of individual brain organization (57). Additionally, the
present results ultimately call for a biological model that character-
izes the physiological underpinnings of complexity drops and ad-
dresses the question of which specific biological function these
episodes of neural regularity might serve. In light of our findings,
one intriguing possibility could be that these moments represent
a mechanism of self-maintenance by which the brain upholds its
functional architecture through recurrent reiteration. A first step
in addressing these questions may be to study whether the observed
complexity dynamics are unique to the awake state or whether and
how they may be altered during sleep or general anesthesia. In
summary, our study speaks to a model of the brain in which its in-
tricate functional architecture is tightly linked to moments of neural
regularity, with several immediate implications for our understand-
ing of large-scale brain dynamics.

Fig. 7. Neural complexity reflects interindividual differences in age and behavior.Multivariate PLS analysis for themain (A and B) and holdout datasets (C and D). (A)
Indicator plot for age and behavioral variables (error bars represent 95% confidence intervals; comp, composite score; PC1, first principal component; asterisks indicate
significant coefficients). Correlation of brain and behavior scores of the first latent variable (LV). (B) Spatial topology and network distribution of the corresponding BSRs.
(C) Indicator plot and latent correlation for the PLS analysis in the holdout data. (D) Spatial topology and network distribution of the BSRs in the holdout data. For
unthresholded maps, see fig. S13. a.u., arbitrary units; BSR, bootstrap ratio.
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MATERIALS AND METHODS
Data and preprocessing
Data were obtained from the HCP (8, 58), including minimally pro-
cessed resting-state fMRI (58, 59), diffusion-weighted images, and
T1-weighted/T2-weighted image ratios (53) as well as demograph-
ics and behavioral scores from 343 participants (205 females, 138
males). The HCP protocol was approved by the local Institutional
Review Board ofWashington University in St. Louis, MO, USA. For
all participants, verbal informed consent was acquired during
screening, and written informed consent was obtained at the begin-
ning of the first study day (8). MRI data were acquired on a 3-T
scanner at Washington University with multiband echo-planar
imaging (1200 volumes, TR = 0.72 s, 2-mm isotropic voxels). Two
runs of approximately 15 min each, one with right-to-left (RL) and
one with left-to-right (LR) phase encoding protocol, were acquired
on two consecutive days, resulting in a total of four resting-state da-
tasets per participant. Spatial distortion correction was applied as
provided in the HCP (58). Of the four scans, one encoding direction
was chosen at random for days 1 and 2, respectively, resulting in two
scans per participant with balanced phase encoding distribution for
the main analyses (day1-LR: n = 168, day1-RL: n = 173, day2-LR:
n = 166, day2-RL: n = 177; Pearson’s χ2 test: χ2 = 0.05, P = 0.82),
with the remaining two scans serving as a holdout dataset for the
validation analyses presented in Fig. 6. Two scans from different
participants were excluded because of incomplete data, resulting
in a total of 684 scans for the main analyses. All acquisition param-
eters and processing pipelines for these data are described in detail
elsewhere (58–62). Bandpass filtering (0.01 to 0.1 Hz) and z scoring
were applied to each voxel before time series extraction. The effect
of filter settings was investigated in fig. S3. Regional BOLD time
series were extracted with the Brainnetome (BNA) atlas (63),
which includes 246 cortical and subcortical regions of interest
(ROIs). Assignment of ROIs to seven canonical RSNs (visual, soma-
tomotor, dorsal attention, ventral attention, default mode, fronto-
parietal, and limbic) is provided with the BNA template (63).
This mapping is derived from the cortical network parcellation by
Yeo et al. (13) and is available fromwww.brainnetome.org/resource.
Regions 165, 177, and 178 (located in the left insular gyrus, left cin-
gulate, and right cingulate, respectively) are not labeled in the tem-
plate and were manually assigned to the frontoparietal network
based on their overlap with the Yeo parcellation. Furthermore,
regions in the basal ganglia, thalamus, hippocampus, and amygdala
were subsumed as subcortical parcels. Last, we investigated the sen-
sitivity of the observed complexity dynamics to methodological
choices of functional parcellation and time series extraction (volu-
metric versus surface-based extraction of cortical time series). To
this end, we compared the BNA parcellation to two volumetric
atlases of higher and lower spatial granularity [after Shen and col-
leagues (64) with 268 ROIs and after Shirer et al. (65) with 90 ROIs]
as well as to the surface-based multi-modal parcellation (MMP)
atlas with 360 cortical ROIs after Glasser and colleagues (66), yield-
ing highly convergent results (figs. S4 and S5).

Time-resolved estimation of signal complexity
Signal complexity of BOLD activity was calculated as WPE through
symbolic encoding of the time series vectors (29). WPE is an ampli-
tude-sensitive extension of permutation entropy (PE) (67), an infor-
mation-theoretic quantity that captures the degree of pattern

irregularity as the Shannon entropy (68) on the occurrence of sym-
bolic motifs within a time series.
WPE is defined as

HWPEðm; τÞ ¼ �
X

i:πm;τi [π

pwðπ
m;τ
i Þlnpwðπ

m;τ
i Þ ð1Þ

wherem is the length of symbolic motifs in the time series, τ is a lag
parameter indicating the number of time points to shift along the
time series, πm;τi represents the i'th symbolic motif out of the set of
possible motifs Π given the motif length, and pwðπ

m;τ
i Þ is the vari-

ance-weighted relative frequency of motif i, as detailed by Fadlallah
and colleagues (29). Following methodological considerations (29,
69) and previous applications of WPE to neural data analysis (70,
71), a motif length of m = 3 and a lag parameter of τ = 1 were
applied to compute the motif distribution over the signal vector
of interest, and WPE values were normalized to lie in [0,1] (29).
Notably, by leveraging both pattern diversity (assessed by PE) and
amplitude information (assessed by the SD over the BOLD vector),
WPE captures signal dynamics that remain undetected when con-
sidering only one of these characteristics (figs. S1 and S2). A further
advantage ofWPE lies in its ability to accommodate a time-resolved
approach, based on the comparatively low number of time series
samples needed to achieve stable estimation (69, 72). Accordingly,
we here applied a sliding window approach, where the entire BOLD
time series is divided into temporally contiguous windows of a pre-
specified length and overlap. In themain text, we report the findings
for a window length of 60 TRs (43.2 s) with 95% overlap, yielding a
window-to-window temporal resolution of 3 TRs (2.16 s) and a
time-resolved signal complexity vector of 380 windows. To investi-
gate the sensitivity of the observed complexity dynamics to the win-
dowing parameters, we analyzed window lengths of 60, 90, and 120
samples with 95% and 90% window overlap, respectively, yielding
highly convergent results (fig. S4).
Given the ubiquitously observed pattern of predominant high

complexity with recurrent complexity drops, we defined a threshold
of drop engagement as the first percentile of the total WPE distri-
bution (critical WPE = 0.273; see Fig. 6). Accordingly, whenever a
region’s signal complexity met this value for a given BOLDwindow,
it was counted as exhibiting a complexity drop in that window
(Fig. 1A). Notably, whether this thresholding procedure was
applied across all participants or as participant-specific percentile
thresholds made essentially no difference to the spatial distribution
of where complexity drops occurred (r = 0.99, P < 0.001). We then
investigated to which extent brain regions coincide in their drop en-
gagement over time. To this end, we iterated over all BOLD
windows in the dataset and counted those regions that met the
drop threshold simultaneously in each window. This count matrix
was normalized by the maximum coincidence count, yielding drop
coincidence values from 0 to 1. The pairwise drop coincidences
between any two regions were then subjected to correlation analyses
with the corresponding FC values (Fig. 1C). Furthermore, we calcu-
lated the time-resolved drop affinity for each scan to investigate how
the likelihood of exhibiting a complexity drop is distributed over
brain regions and age groups. To this end, a binary matrix
(BOLDwindows over ROIs) was created, containing ones whenever
a region’s signal complexity met the drop threshold in a particular
window, and zero otherwise. These affinity matrices were then av-
eraged to estimate participant-wise and region-wise drop affinity.
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Note that the time-resolved affinity vector for individual scans also
served the observation of brain-wide engagement in complexity
drops (Fig. 2A) and the subsequent propagation analysis.
We furthermore assessed the degree of similarity between a

region’s complexity time series and its contralateral equivalent
(Fig. 1D). To this end, we defined an interhemispheric symmetry
index (ISI), which is computed as the correlation coefficient of a
region with its contralateral equivalent, weighted by the proportion
of the 246 BNA regions that were less strongly correlated with that
region. Accordingly, a region with high cross-hemispheric similar-
ity shows many regions that are less correlated with it than the con-
tralateral equivalent, yielding a weighting factor close to one. In
contrast, if there are many regions that exhibit a higher correlation
to the target region than the contralateral ROI, this weighting factor
decreases, resulting in lower ISI values.

Descriptive statistics
Group-level comparisons (e.g., by age or by RSNs) were carried out
with the nonparametric Kruskal-Wallis test (73), which rests on ob-
servation ranks and applies to n > 2 groups. Effects were considered
statistically significant at a level of α = 0.05 for all tests. Pairwise
comparisons were conducted with rank sum tests (74), adjusting
for multiple comparisons using the false discovery rate (FDR). As-
sociations between continuous variables were assessed with para-
metric or nonparametric correlation tests, depending on the
underlying distributions. Participant age as provided in the HCP
data was given in the age groups of 22 to 25, 26 to 30, 31 to 35,
and >35 years; for age-wise comparisons, however, participants
over 35 years were excluded, as this only applied to n = 3 individuals.
For all assessments of directional effects, two-tailed tests
were applied.

Propagation analysis
The propagation of complexity drops across the brain was formal-
ized as a graph theoretical problem. Here, each individual propaga-
tion was modeled as a directed graph where nodes represent brain
regions exhibiting a complexity drop and directed edges represent
the progression in time from one BOLD window to the next.
To identify drop cascades in the dataset, a stepwise search pro-

cedure was applied. First, all BOLD windows with at least n = 10
regions simultaneously exhibiting a complexity drop were identified
in the time-resolved affinity vector. If there were several temporally
contiguous windows that met this criterion, the window with the
maximum number of dropping regions was defined as the peak
layer in the directed graph. From this peak layer, a window-by-
window backward and forward search identified the neighboring
windows in which the number of dropping regions increased
until reaching the peak layer (propagation phase) and decreased
after the peak (fade phase), respectively. The minimum cascade
length thus included three contiguous windows (initialization-
peak-fade). Although very rare, instances in which the windows di-
rectly before or after the peak showed no dropping regions were dis-
carded. To investigate the spread of complexity drops in the
propagation phase, individual directed graphs were constructed
from the initialization window—in which the regions exhibiting
drops represent the graph’s source nodes—to the peak
window (Fig. 2B).
For all windows from initialization to peak, the newly dropping

regions from onewindow to the next were registered to compute the

empirical transition probability, where all newly dropping regions
in window i obtain directed edges to all newly dropping regions
in window i + 1. The region-by-region transition probability
matrix (TPM) was then constructed on the basis of the path-weight-
ed edges in the propagation graph. Here, edges in temporally con-
tiguous windows were assigned a weight of 1, while connections in
non-neighboring windows were assigned the inverse of the path
length (e.g., 1/2 for connections from window i to window i + 2)
to account for the temporal evolution of the spread. For instance,
if engagement of region A is frequently followed by engagement
of region B, but through variable intermediate engagement of
regions C, D, etc., this is missed in a binary TPM, as only neighbor-
ing windows are considered. Construction of propagation graphs
and TPMs over individual cascades subsequently allowed for partic-
ipant-wise and group-level analyses: To capture cascade origina-
tion, the source node probability of each brain region was
computed as the rate of occurrence in the initialization window.
The diversity of source nodes was calculated as the percentage of
unique brain regions ever initializing a participant’s cascades. The
average TPM over individual spreads yielded the directed group-
level propagation network in Fig. 2E, representing the 95th percen-
tile of path-weighted transition probabilities. However, fig. S14
shows the unthresholded matrix and furthermore illustrates that
these spatiotemporal propagation pathways are highly consistent
over different peak thresholds (i.e., the minimum number of
regions that simultaneously show a complexity drop in the
peak window).
Graph construction and topological analyses on the propagation

network were implemented with the igraph package (version 1.2.5)
for R (75). The hub structure of the thresholded network was quan-
tified as Kleinberg centrality, an extension of eigenvector centrality
for directed networks (76). Geodesic distances were computed for
every node-to-node comparison in the temporal propagation
network and averaged for all combinations within and across
RSNs. The average distance matrix was then subjected to hierarchi-
cal clustering using the default complete linkage method (77). As
this approach revealed a highly suggestive order from unimodal
to transmodal networks, we explicitly investigated this cluster struc-
ture by defining a unimodal and a transmodal cluster group, sub-
sequently tested with a Monte Carlo simulation using the sigclust
package (78). The null hypothesis of this cluster test is that the
data emanate from a single Gaussian distribution. To assess this hy-
pothesis, 5000 Gaussian samples were created to estimate the distri-
bution of the cluster index (78), a test statistic defined as the sum of
within-class sums of squares about the mean in relation to the total
sum of squares about the overall mean (see https://rdrr.io/cran/
sigclust/man).

Clustering of complexity states
The time-resolved signal complexity matrix (rows: 684 scans × 380
windows = 259,920 observations; columns: 246 ROIs) was subjected
to unsupervised structure detection to investigate temporally dis-
crete complexity states. To this end, we applied the MATLAB-
inbuilt k-means clustering algorithm with a maximum of 1000 iter-
ations, 20 replicates with random initial positions to avoid local
minima, the k-means ++ heuristic for centroid initialization, and
the squared Euclidean distance as the target metric to be optimized.
On the basis of the observed complexity dynamics (Fig. 1A;

online repository: https://osf.io/mr8f7), we expected a predominant
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high-complexity state, an infrequent low-complexity state, and a
varying number of intermediate complexity states. As common
cluster evaluation indices to determine the optimal k of expected
clusters resulted in heterogeneous estimates between k = 3 and
k = 5 depending on windowing parameters and the optimization
criterion applied, we specified k = 4 (i.e., two intermediate complex-
ity states) and ran comprehensive validation analyses for k = 3 (i.e.,
one intermediate state) and k = 5 (i.e., three intermediate states).
Results reported in the main text were extremely robust against
the choice of k, including the occupancy-complexity relationship,
the impact of complexity states on network strength and topology,
state dispersion, and the spatial topology of complexity states
[whose spatial heterogeneity was assessed on the basis of the
MLRT (79)] and its link tomyelination and the primary FC gradient
(figs. S8 and S9).

State dispersion index
To assess the degree to which the empirical state visits of an indi-
vidual participant were distributed across the k possible complexity
states, we defined a state dispersion index(SDI), calculated as

SDIðpkÞ ¼ 1 �
W1ðpk; ukÞ
W1ðδk; ukÞ

ð2Þ

whereW1(pk, uk) corresponds to the first Wasserstein distance (80,
81) between the empirically observed discrete distribution of state
occupancy pk (Fig. 3, A to C) and the theoretical maximum disper-
sion distribution uk =U(1, k), i.e., the uniform distribution in which
each state is visited with a frequency of 1/k. The Wasserstein metric
is also known as the earth mover’s distance and can be viewed as the
minimum cost of transforming one probability distribution into
another one (or, intuitively, how much a pile of “earth” would
need to be moved to be turned into another one). Here, W1(pk,
uk) thus describes how much the empirical occupancy distribution
would have to be transformed to be maximally dispersed (i.e., iden-
tical to the uniform). This distance is normalized by W1(δk, uk),
which is given by the Wasserstein distance between the theoretical
minimum dispersion distribution δk (i.e., a zero-entropy degenerate
distribution in which only one of the k states is ever visited) and the
uniform distribution. Consequently, the SDI lies in [0,1] and is
bounded by 0 if only one state was ever visited by the participant
(minimum state exploration) and 1 if the empirical state occupancy
is identical to the uniform (maximum state exploration).

Distance across complexity states
To characterize the spatial topology across the estimated complexity
states, we defined an index of distance across complexity states
(DACS). Let K denote the set of unique centroid pairs (i, j) in k-di-
mensional state space. For each brain region, the DACS is computed
as the cumulative Euclidean distance D over all pairs of centroids C
in K

DACS ¼
X

ði;jÞ[K

DðCikCjÞ ð3Þ

For the BNA parcellation, this yields a 1 × 246 vector, where
higher values indicate brain regions that show greater centroid-to-
centroid distances and thus more pronounced differences in signal
complexity over the estimated complexity states. Note that the re-
sulting DACS topology was very robust against the choice of k

(figs. S8 and S9) and that this vector constituted the input for the
subsequent correlation analyses linking state topology to cortical
myelination and the primary FC gradient as well as to structure-
function coupling (see below).

FC and network topology
Static FC was estimated as the ROI-by-ROI Pearson correlation
matrix over the entire resting-state recording. These matrices were
averaged over runs and participants to obtain the group-level FC
matrix for investigating the association to drop coincidence and
for the construction of the macroscale connectivity gradient. Fur-
thermore, dynamic FC was computed as the correlation matrix
over each BOLD window, resulting in a 246 × 246 × 380 array for
the specified window parameters. Dynamic connectivity strength
was calculated as the mean over these window-wise matrices, yield-
ing a 1 × 380 vector. The topology of the time-resolved functional
networks was assessed with the Brain Connectivity Toolbox (82),
available from www.brain-connectivity-toolbox.net. Network mod-
ularity as a measure of functional segregation was estimated
through Louvain community detection (community_louvain.m)
with asymmetric treatment of negative weights as previously recom-
mended (82) and with a γ parameter of 1.05 to accommodate the
ability to detect smaller modules (82), reflecting the idea to approx-
imate the number of canonical functional networks with the iden-
tified modules. However, modularity estimation was highly
consistent across choices of γ values (main text versus toolbox
default of γ = 1: ρ = 0.99, P < 0.001; all pairwise correlations in
linear grid search from γ = 0.75, 0.80,…, 1.25 yielded ρ coefficients
of 0.95 or above). Furthermore, global efficiency as an estimate of
functional integration was computed using the efficiency_wei.m
function, with negative weights discarded (82). This approach
yielded vectors of time-resolved modularity and global efficiency
(1 × 380 BOLD windows) for each resting-state recording. These
time-resolved vectors constituted the input for the calculation of
both the participant averages (Fig. 3A) and the window-to-
window transitions (Fig. 3B) of these network measures, where
the corresponding complexity state vector from the clustering
output served as a state-wise mask.

Computing BOLD cofluctuations
BOLD cofluctuations among brain regions were estimated from the
edge time series first introduced by Esfahlani and colleagues (30). In
brief, this approach entails an exact mathematical decomposition of
the correlation between two z-scored time series, which is achieved
by omitting the calculation of the mean of their element-wise
product and instead yields a time-resolved vector of moment-to-
moment cofluctuations of the two regions that can be interpreted
as the framewise contribution to their correlation. To compute
these cofluctuation time series in our data, we used the code provid-
ed by the authors, publicly available from https://github.com/brain-
networks/edge-ts. Furthermore, we also followed Esfahlani and col-
leagues in computing the cofluctuation magnitude as the root sum
of squares (RSS) and thresholding RSS time series to the 95th per-
centile to obtain high-amplitude cofluctuation events. Figure S6
shows an example of these BOLD cofluctuations as computed
from our data. Moreover, the cofluctuation of complexity time
series shown in fig. S6D was computed in analogy, using the
same approach on the regional complexity time series. Notably, al-
though the computational operations on the WPE time series are
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identical, BOLD edge time series are computed on single frames,
while sample points of complexity time series correspond to
windows of 60 frames, resulting in a difference in temporal scales.
Comparisons between BOLD cofluctuations and complexity dy-
namics were thus implemented by (i) comparing the magnitude
of complexity cofluctuations and the mean BOLD cofluctuation
magnitude per window with continuous correlations (Pearson’s r)
and (ii) comparing the binary event time series relating whether a
drop coincidence was present in a given window and whether a
high-amplitude BOLD cofluctuation was present in a given
window with biserial correlations (Ф coefficient). While the analy-
ses in fig. S6 rest on pairwise comparisons between the BOLD time
series and complexity time series of any two given regions, we also
related global BOLD cofluctuation magnitude—computed as the
RSS time series across the entire network (30)—to global signal
complexity and the global number of complexity drops across the
whole brain, which similarly yielded limited associations (mean
correlation r = −0.28 ± 0.14 for global signal complexity;
r = 0.08 ± 0.13 for global complexity drops; n = 684 scans).

Null model estimation
Given the ubiquitous observation of complexity drops across partic-
ipants, scanning sessions, and a range of methodological parame-
ters, we investigated whether the empirical complexity dynamics
would be equivalently observed in a null model of temporal depend-
ency displayed in fig. S7. To this end, individual BOLD time series
were temporally permuted in blocks of three time points (corre-
sponding to the length of individual motifs), equivalently applied
to all regions and scans. This approach preserved the mean and var-
iance of individual time series as well as the covariance structure
across time series (i.e., the static FC matrix). The surrogate distribu-
tion of signal complexity was then estimated by computing the
window-wise WPE values, as detailed above for the empirical
data. Since complexity drops are defined as instances equal or
below the first percentile of the overall complexity distribution, ap-
plying the same threshold to the surrogate distribution ensured that
the identical number of “surrogate drops” was present in the null
model. This approach subsequently allowed us to ask whether en-
forcing the presence of these instances would also maintain the spa-
tiotemporal structure and interindividual differences observed in
the empirical data. Regarding the spatial topology of signal com-
plexity, we first computed the complexity distribution across
brain regions for each scan and related the empirical z scores to
the surrogate z scores in fig. S7C. Next, we computed the affinity
for complexity drops of individual participants in the surrogate
data (fig. S7D) and tested whether the age effect of decreasing
drop affinity in higher age was equally found as in the empirical
data (Fig. 1B). Last, we asked whether an identical number of
drops in the surrogate data would also entail the same propensity
of brain regions to drop together (fig. S7E). To this end, we comput-
ed the number of drop coincidences per scan and compared them
between empirical and surrogate data (rank sum test) and further-
more compared the spatial distribution of which brain regions pref-
erentially drop together, corresponding to the drop coincidence
values in Fig. 1C.

Structural connectivity estimation
Structural connectivity matrices were computed using probabilistic
tractography as implemented in the FMRIB’s Diffusion Toolbox

ProbtrackX GPU program (83). Diffusion-weighted data provided
as the Diffusion BedpostX package were available for 340 of the 343
participants in the study population. These data were preprocessed
as previously described (58), including registration to native space,
movement and eddy current correction, and application of Bed-
postX to model white matter (WM) fiber orientations for probabi-
listic tractography. The connectivity distribution is then computed
using iterations of streamlines propagated from seed regions to
target regions. Briefly, a single propagation entails moving along a
streamline by steps of a specified length, evaluating for exclusion or
termination criteria at each step, and continuing this process until
criteria for exclusion (streamline discarded) or termination (prop-
agation ended but streamline retained) are met. The output is a
matrix that quantifies the number of nondiscarded streamlines
between a seed and target.
In line with the functional analyses, BNA regions were specified

as seed ROIs to guide tractography. Network mode was applied in
ProbtrackX to compute an ROI-by-ROI connectivity matrix, where
rows represent seed ROIs and columns correspond to target ROIs.
Each BNA region was input as a binary mask in MNI space. Since
the seed ROIs (standard) and processed diffusion data (native) were
not registered to the same space, bidirectional participant-specific
nonlinear transformations between standard and structural space
as provided by the HCP were passed to ProbtrackX. Following the
recommendation that the inclusion of additional anatomical priors
increases the biological plausibility of modeled WM tracts (84), we
included participant-specific gray matter (GM) masks from Free-
Surfer as termination masks (--stop). By terminating a propagated
streamline as soon as it enters this GMmask, streamlines are forced
to terminate near the boundary between GM and WM instead of
traveling further into a GM region. Streamline termination param-
eters were applied as per ProbtrackX defaults: Streamline curvature
threshold exceeded (0.2, ~80°), streamline path returns to a point
that it already intersected previously (--loopcheck), streamline
exits nodiff_brain_mask (BedpostX output), and maximum
number of steps per streamline (2000) reached using a step length
of 0.5 mm.
For each voxel in a seed region, 1000 samples were propagated.

Distance correction (--pd) was applied to compensate for the bias
that the probability of a streamline successfully reaching the target
ROI decreases as the distance between a seed and target ROI in-
creases. Distance correction as implemented in ProbtrackX
adjusts the connectivity distribution between a seed-target ROI
pair by multiplying the number of successful streamlines between
the ROIs by the average path length of the streamlines. Last, ROI-
by-ROI connectivity matrices were then normalized using the prob-
abilistic streamline connectivity index (PSCI) procedure, as previ-
ously described (85). The PSCI scales the streamline counts
between ROI pairs based on the number of propagated and success-
ful streamlines as well as the size of both the seed and target ROIs.

Estimating structure-function coupling
Structure-function coupling was estimated with the structural-de-
coupling index introduced by Preti and Van De Ville (41). Here,
we refer to this measure as the Structure-Function Decoupling
Index (SFDI) to avoid confusion of the acronym with the SDI de-
tailed above. The SFDI quantifies the dependency of functional
signals on anatomical structure and builds upon a series of concepts
from graph harmonic analysis. In brief, the structural connectome is
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decomposed into harmonic components, and brain activity of every
time point is written as a weighted linear combination of harmonic
components. A key step entails a splitting procedure that decom-
poses brain activity into coupled and uncoupled portions, and the
ratio of decoupled and coupled signal norms then yields the SFDI.
To estimate SFDI values from our data, we used the code provided
by the authors at www.github.com/gpreti/GSP_
StructuralDecouplingIndex. The regional SFDI values displayed in
Fig. 5A correspond to the average across scans and are displayed in
binary logarithmic scale, as in (41). We then related the degree of
structure-function coupling per region to the DACS by means of a
spin permutation test, as detailed below.

Myelin estimation
Cortical grayordinate myelin maps obtained from the T1-weighted/
T2-weighted image ratios (53) were used to calculate the average
myelin content of ROIs in the atlas template. Since our parcellation
approach did not benefit from the higher resolution of the 164k
images, we analyzed the unsmoothed, bias-corrected 32k areal
feature–based aligned images (“MyelinMap_BC_MS-
MAll.32k_fs_LR.dscalar.nii”) using the Multimodal Surface Match-
ing algorithm (86). Parcel-wise myelin content was obtained using
the Connectome Workbench (command: -cifti-parcellate) by aver-
aging over the myelin map within the respective BNA regions.

Gradient construction, spin permutation, and hierarchical
regression
The macroscale connectivity gradient was computed on the group-
average FC matrix. As only the cortex is mapped to the FreeSurfer
sphere for later spin permutation, the input matrix was restricted to
the 210 × 210 cortical ROIs of the BNA. Gradient analysis was im-
plemented with the BrainSpace toolbox (87) for neuroimaging and
connectomic datasets. Following Margulies and colleagues (23),
cosine similarity was applied to compute the affinity matrix. A
total of 10 components, diffusion embedding for nonlinear dimen-
sionality reduction (diffusion time of 0, α parameter of 0.5), and
90% region-wise feature sparsity were used for gradient construc-
tion, following the default recommendations (87). The gradient fit
on these data is displayed in Fig. 4C and precisely identified the
principal unimodal-to-transmodal connectivity gradient first re-
ported by Margulies and colleagues (23). To examine the associa-
tion between these gradient loadings and the other cortical
features (myelination and DACS), we applied spin permutation cor-
relation of the respective cortical maps. This approach consists in a
series of random spherical rotations that preserve the spatial auto-
correlation of the data, resulting in empirical null models that coun-
teract the potential inflation of statistical significance in simple
univariate tests (87–89). Here, we implemented a variant of this pro-
cedure that specifically applies to parcellated instead of vertex-wise
cortical maps (90). Nonparametric correlations over 5000 random
rotations were computed to estimate the empirical distribution of
the test statistic for the three comparisons between gradient load-
ings, cortical myelination, and the DACS described above.
The empirically observed associations across these cortical fea-

tures were furthermore subjected to a nonparametric partial corre-
lation analysis using the ppcor package for R (Fig. 4D) (91). As this
approach suggested high explanatory power of complexity states,
these analyses were corroborated with a hierarchical regression ap-
proach, where variance in gradient loadings was modeled as a

function of cortical myelination (compact model 1), the DACS
(compact model 2), or both (augmented model 3). These individual
linear models were then compared through F tests for nested
models with the lmSupport package for R (https://rdrr.io/cran/
lmSupport).

Complexity-behavior associations
To assess associations between signal complexity and participant
characteristics, average WPE values per ROI and participant were
tested against age and indices of cognitive performance, motor
skills, and sensory scores, as provided with the HCP data. To
ensure data quality and to minimize the impact of non-normally
distributed variables, we transformed response time data to speed
via inversion, subjected skewed data to log transformations (if ab-
solute skewness >1), excluded data from participants with missing
values in at least one variable, and removed outliers (mean ± 4 SDs).
In total, data from 13 participants were thus excluded, leaving
n = 330 participants for behavioral analyses. To this end, we
tested the multivariate relationship between BOLD signal complex-
ity and individual participant measures by means of a PLS analysis
(Fig. 7) (92–94). We applied a behavioral PLS approach that allows
for the estimation of multivariate correlations between a three-di-
mensional brain variable (average WPE per ROI and participant)
and multiple behavioral measures (fig. S12). To focus this analysis
on general features of behavioral and cognitive abilities, we per-
formed principal component analyses on the respective sets of
single measures of performance and speed in cognitive tasks,
motor performance, and sensory skills. For each of the four
domains, the first principal component accounted for more than
35% of the total variance, and component loadings were strictly
positive, resulting in four principal component scores per partici-
pant that entered PLS analyses alongside individual age as well as
composite scores of fluid and crystalized cognition, as provided
with the HCP data, such that seven behavioral variables were used
in the PLS analysis.
In brief, PLS works via the calculation of a correlationmatrix that

captures the between-participant correlation of the target brain
measure in each region and the behavioral metrics of interest
(matrix size: Nregions × Nbehavior = 246 × 7). Next, this rank correla-
tion matrix is decomposed using singular value decomposition, re-
sulting in Nbehavior × Nbehavior latent variables. This approach
produces two main outputs: (i) a singular value for every latent var-
iable, indicating the proportion of cross-block variance explained
by the latent variable, and (ii) a pattern of weights (Nregions) repre-
senting the rank correlation strength between WPE and behavioral
measures. The multiplication (dot product) of these weights with
region-wise WPE yields brain scores reflecting the between-partic-
ipant correlation of complexity and behavioral metrics. Statistical
significance of these brain scores and underlying latent variables
was tested by permuting behavioral measures across participants
and recalculating the singular value of each latent variable (5000
permutations). To furthermore estimate the robustness of the cal-
culated weights, a bootstrap procedure was applied (5000 bootstraps
with replacement). The division of the empirical weights by the
bootstrapped standard error yields bootstrap ratios (BSRs). These
BSR values estimate the robustness of observed effects on a
region-wise level and can be interpreted as values from a z-distribu-
tion. Hence, BSR values exceeding 1.96 relate to a correlation
between the latent brain scores (weighted average WPE) and the
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latent behavioral scores (weighted behavioral metrics) at P < 0.05,
and likewise P < 0.01 for BSR values exceeding 2.7. Moreover, boot-
strap resampling was also applied to estimate the 95% confidence
intervals for the observed indicator correlations between WPE
and behavioral measures. As noted in the main text, this approach
was conducted separately for the main and holdout datasets as well
as for individual scanning sessions to estimate the robustness of
complexity-behavior effects, with highly consistent results (Fig. 7
and fig. S13).

Supplementary Materials
This PDF file includes:
Figs. S1 to S14

Other Supplementary Material for this
manuscript includes the following:
Movie S1

View/request a protocol for this paper from Bio-protocol.
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