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Brain connectivity fingerprinting and behavioural
prediction rest on distinct functional systems of the
human connectome
Maron Mantwill 1,2,5✉, Martin Gell2,3,4,5, Stephan Krohn1,2 & Carsten Finke 1,2

The prediction of inter-individual behavioural differences from neuroimaging data is a rapidly

evolving field of research focusing on individualised methods to describe human brain

organisation on the single-subject level. One method that harnesses such individual sig-

natures is functional connectome fingerprinting, which can reliably identify individuals from

large study populations. However, the precise relationship between functional signatures

underlying fingerprinting and behavioural prediction remains unclear. Expanding on previous

reports, here we systematically investigate the link between discrimination and prediction on

different levels of brain network organisation (individual connections, network interactions,

topographical organisation, and connection variability). Our analysis revealed a substantial

divergence between discriminatory and predictive connectivity signatures on all levels of

network organisation. Across different brain parcellations, thresholds, and prediction algo-

rithms, we find discriminatory connections in higher-order multimodal association cortices,

while neural correlates of behaviour display more variable distributions. Furthermore, we find

the standard deviation of connections between participants to be significantly higher in

fingerprinting than in prediction, making inter-individual connection variability a possible

separating marker. These results demonstrate that participant identification and behavioural

prediction involve highly distinct functional systems of the human connectome. The present

study thus calls into question the direct functional relevance of connectome fingerprints.
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The mapping of individual cognitive and behavioural per-
formance to neurological patterns, and the identification
of robust disease biomarkers are primary goals of

neuroscience1,2. Indeed, the ability to predict individual cognitive
performance or identify neurological disease markers is often
regarded as an important development towards a more indivi-
dualised behavioural neuroscience3,4. However, this focus on the
individual requires a shift from group-level to single-subject
analyses, moving the focus from finding average differences
between groups into a more mechanistic understanding of the
underlying processes5, accommodating idiosyncratic differences
between individuals.

Connectome fingerprinting represents one such individualised
and powerful approach to single-subject analysis6,7. In con-
nectome fingerprinting, individual participants can be reliably
identified within large data sets with accuracies exceeding 90%,
based on the discriminatory power of individual functional
connectomes. Although the method can be used as a measure
of the uniqueness and reliability of individual functional
connectomes8–10, its large appeal to the community is likely more
practical: the possibility of a relation between connectome fin-
gerprinting and behaviour, individual traits, or clinical markers5.
Since its conception, connectome fingerprinting has raised the
intriguing question whether distinctive individual connectivity
signatures are also functionally relevant to variation in
behaviour7. Subsequent literature on fingerprinting is ripe with
parallel investigations of individual identifiability and prediction
of behaviour, using static functional connectivity8,11,12, dynamical
functional connectivity13, structural connectivity14 and structural
features like cortical thickness or myelin12 as the basis for iden-
tification and prediction. Indeed, those resting-state networks that
show the highest inter-individual variability—such as the fron-
toparietal, default mode and dorsal attention network15–17—have
also been shown to contain highly discriminatory features in
fingerprinting6,7,18–20 and are at the same time commonly asso-
ciated with behaviorally and clinically relevant variability21–23. In
consequence, discriminatory fingerprinting signatures and inter-
individual variability in behaviour have consistently been inter-
preted or assumed to be related7,12–14,24–26.

However, such interpretations of the functional relevance of
connectome fingerprinting commonly rely on visual inspection of
the network-level organisation (i.e., the relative distributions of
predictive or discriminatory connections in different resting-state
networks), whereas both connectome fingerprinting and beha-
vioural prediction ultimately rest on individual edges. As such,
claims about a link between behaviour and fingerprinting draw
upon aggregated data instead of the underlying region-to-region
connections. This is further paralleled by a lacking analytical
explanation of the assumed relationship. Therefore, although
previous findings have revealed suggestive network-level patterns
pointing to a potential overlap between discriminatory and pre-
dictive features of the functional connectome, a detailed, multi-
layered statistical analysis is necessary to investigate if such a
relationship can be verified empirically.

Here, we investigate the purported relationship between pre-
dictive and discriminatory resources of connectome fingerprints in
detail. We first replicate the analysis from Finn et al.7, confirming a
suggestive overlap based on visual inspection. However, a systematic
examination of this overlap in diverse behaviours shows that dis-
criminatory connectome features and connections predictive of
behaviour are unrelated on different levels of organisation: single
edges, network level and topographical distribution. These findings
are robust with respect to different parcellation schemes and pre-
diction algorithms. Together, our results suggest an alternative
perspective on the relationship between fingerprinting and beha-
vioural prediction, resting on edge-level variability.

Results
We first replicated the high fingerprinting accuracies and within-
network overlap between predictive and discriminatory features
of the connectome observed previously7. Next, we investigated
the overlap between the features of interest in fingerprinting and
prediction on edge-by-edge, network-by-network, and a large-
scale topographical level. Here, we only present the results for
fluid intelligence, language comprehension, and grip strength for
the positive models of the CPM27 framework (see Methods for
details), with a feature selection threshold of p < 0.01. However,
results equivalently hold for negative models as well as for other
feature selection thresholds (p < 0.001, 0.005, 0.05), and can be
found in the supplements (Suppl. Figs. 1–3).

Connectome fingerprinting and network distribution of
within-network connections. We observed high fingerprinting
accuracy of 96.8% (328/339, permutation-derived p < 0.001
against chance) when identifying individuals from session 1, and
97.3% (330/339, p < 0.001) when identifying individuals from
session 2. Focusing on within-network connections, we observed
strong involvement of highly discriminatory edges from the
medial frontal (MFN), frontoparietal (FPN), and default mode
network (DMN) as well as minor involvement of the subcortical-
cerebellar network (SCN) (Fig. 1a). These results closely resemble
previous findings with comparable accuracies and within-network
contributions7.

Within-network connections and behavioural prediction. We
found a significant correlation between the measured values and
the predicted values of fluid intelligence (r(316)= 0.22, p < 0.001;
Fig. 1b). The within-network connections that were most often
selected as features were found in the MFN, FPN and SCN
(Fig. 1a). Akin to Finn et al.7, networks supporting prediction
resembled the networks displaying the highest proportion of
discriminatory edges in fingerprinting, i.e., both the MFN and
FPN contributed to fingerprinting and prediction of fluid intel-
ligence (Fig. 1a). Further corroborating these findings, we found
the DMN to be involved in fingerprinting but not in the positive
prediction models, as was reported7. Motor Network (MN),
Visual Network I (VN1), Visual Network II (VN2) and the Visual
Association Network (VASN) did not strongly contribute to
prediction or fingerprinting, as edges from those networks
did not appear in the 99th percentile of discriminatory nor
predictive edges.

Overall, we observed a significant correlation between
measured and predicted values in 12 out of 30 psychometric
variables (Suppl. Table 2 for all prediction results) including our
two other variables of interest, language comprehension and
grip strength (Table 1, all p values permutation-derived, with
n= 1000). When we examined the network contributions to the
prediction of language comprehension, we found large involve-
ment of within-network edges in the MFN, FPN and VASN, and
more discrete involvement of the SCN within-network edges.
Once more, these networks resembled those best discriminating
between individuals. In strength prediction, VN2 and the VASN
within-network edges were most predictive. In sum, within-
network analyses of discriminatory and predictive edges seem to
suggest a functional relevance of connectome fingerprints to
inter-individual differences in higher-order cognitive functions
such as fluid intelligence and language comprehension, but not
grip strength, in line with the previous reports7.

The above findings notwithstanding, if participant identifica-
tion analysis is functionally relevant, some degree of overlap
between discriminatory and predictive features would be expected
beyond the mere resemblance of within-network contributions,
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e.g., overlap at the level of single edges, between-network
connections, or the large-scale spatial distribution of discrimina-
tory and predictive nodes.

Single-edge overlap analysis. We first investigated the overlap
between highly discriminatory edges in fingerprinting and edges
predictive of behaviour, without averaging or grouping these
edges into resting-state networks (Table 2 and Fig. 2a). We found
that the overlap between discriminatory and predictive edges did
not exceed the chance level for any of the psychometric variables
(Table 2).

Furthermore, if discriminatory edges are indeed relevant to the
psychometric variables of interest—assuming that participant
identification analysis was functionally relevant beyond the mere
resemblance of within-network contributions—one should be able
to predict these scores using the discriminatory edges directly.
We tested this by modifying our prediction pipeline, replacing the
feature selection step and instead directly applying the discrimina-
tory edges in the training data of each CV fold. We then used this
set of discriminatory edges to predict fluid intelligence, language
comprehension, and grip strength in the test set. We found that
predictions based on discriminatory edges could not significantly
predict any of the three behavioural variables (Table 3), further
corroborating that edges with high discriminatory potential are not
related to behaviour on the single-edge level.

Network overlap analysis. Next, as individual functional connec-
tion weights have low reliability28, we investigated the network
distribution of edges, this time including both within- and between-
network connections (Fig. 2b). For fingerprinting, we found a
cluster of highly connected edges between as well as within the
MFN, FPN and DMN, and to a lesser extent in the SCN. This was

in stark contrast to between-network connections found in psy-
chometric prediction, which displayed a much more variable pat-
tern. Most reliably, predictive features included connections
between the DMN, the visual networks, and the rest of the brain,
except for some within-network edges in the MFN and FPN for
fluid intelligence. Furthermore, analysing the proportion of selected
edges by network, we found that discriminatory edges did not
significantly relate to fluid intelligence (r(34)=−0.08, p= 0.620),
language comprehension (r(34)=−0.15, p= 0.585), nor grip
strength (r(34)=−0.39, p= 0.051). Taken together, these findings
suggest that even on a network level, highly discriminatory edges
were not related to behaviour.

Topological analysis of nodes with high degree of predictive
edges. Next, we investigated the overlap on a large-scale topological
level. We found that discriminatory nodes (i.e., nodes with a high
degree of discriminatory edges) clustered almost exclusively in the
superior frontal, inferior parietal, and superior temporal regions
(Fig. 3a). In line with our network-derived findings, predictive
nodes displayed a more variable spatial distribution (Fig. 3b–d) and
largely covered different parts of the cortex compared to dis-
criminatory nodes. Corroborating these observations, there was no
correlation between the spatial distribution of discriminatory nodes
in fingerprinting and any behavioural prediction (Fig. 3b–d, right
panel, all p values derived using spin permutation), again suggesting
the spatial organisation of discriminatory nodes was not related to
behaviour.

Variability analysis. Subsequently, we performed an exploratory
analysis to investigate how edge properties relate to the diver-
gence between discriminatory and predictive connectome fea-
tures. Focusing on edge standard deviation of functional

Fig. 1 Within-network distribution of selected edges in fingerprinting and behavioural prediction. a Visualises the percentage of selected edges for
fingerprinting and for prediction within each network, adjusted for the total number of edges in each network. b–d shows the prediction results of three
psychometric variables of interest. Language comprehension was evaluated using the picture vocabulary task.
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connectomes, we discovered that discriminatory edges generally
show high variability across participants (Fig. 4). Investigating
this variability by comparing the 99th percentile of discriminatory
edges in fingerprinting and the 99th percentile of edges with high

standard deviation showed a strong and significant (122/358,
p < 0.001) overlap, which increased even further when thresh-
olding at the 98th percentile (179/358, p < 0.001) and the 95th
percentile (286/358, p < 0.001; all p values permutation-derived,

Table 1 Results for psychometric prediction.

Psychometric variable Spearman correlation p values Participants (n)

Fluid cognition composite score 0.22 0.002 318
Crystalised cognition composite score 0.21 0.001 320
Total cognition composite score 0.25 <0.001 318
Cognitive flexibility 0.18 0.006 319
Fluid Intelligence 0.22 <0.001 319
Sustained attention (specificity) 0.17 0.015 319
Grip strength 0.44 <0.001 319
Dexterity 0.23 <0.001 320
Language/reading decoding 0.19 0.003 320
Language comprehension 0.19 0.004 320
Spatial orientation 0.21 0.002 319
Emotion recognition 0.20 0.002 319

Last column contains the number of participants with complete data. All p values are permutation-derived and FDR-corrected for all behavioural predictions.

Table 2 Overlap between highly discriminatory and predictive edges.

Psychometric variable Number of predictive edges Overlapping edges Mean ± SD of permutation p values

Cognitive flexibility 212 0 1.46 ± 1.09 0.81
Crystalised cognition composite score 149 1 1.69 ± 1.31 0.5
Fluid cognition composite score 258 0 1.72 ± 1.07 0.88
Total cognition composite score 260 0 2.29 ± 1.27 0.92
Dexterity 359 0 0.74 ± 0.76 0.58
Emotion recognition 245 0 0.55 ± 0.72 0.46
Fluid intelligence 185 0 0.74 ± 0.81 0.55
Language comprehension 140 0 1.04 ± 1.03 0.65
Language/reading decoding 133 3 2.09 ± 1.27 0.13
Sustained attention (specificity) 133 1 0.87 ± 0.85 0.22
Grip strength 785 1 6.59 ± 2.24 0.99
Spatial orientation 179 2 2.46 ± 1.36 0.48

All p values were derived using degree-preserving permutations.

Fig. 2 Single-edge and between-network overlap for fingerprinting and prediction. a Grey lines mark highly discriminatory edges for fingerprints and
predictive edges for behaviour, thresholded at the 99th percentile or p < 0.01 respectively. Red lines, only available for strength, visualise overlap. For fluid
intelligence and language comprehension, no edges overlapped. b Shows the entire network-by-network matrix of the same selected edges, adjusted for a
total number of edges.
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Fig. 4a). Furthermore, edges used in prediction showed sig-
nificantly lower variability for all three psychometric variables
(Welch’s F(3, 409)= 675, p < 0.001, est. ω2= 0.58; post hoc
comparisons using Games–Howell test all at p < 0.001, two-tailed,
FDR-corrected) than discriminatory edges (Fig. 4b). Taken
together, discriminatory edges in fingerprinting substantially
overlap with edges showing higher variability in connectivity
across participants, while edges predictive of behaviour are con-
strained to edges with intermediate variability.

Validation analysis. To make sure that our analysis generalised
beyond a single prediction method, we repeated the analysis of
edge-level overlap between discriminatory edges and predictive
edges for all three behaviours, using Support Vector Regression
instead of CPM. This independent prediction method corrobo-
rated the lack of overlap for all tested behaviours (Suppl. Table 3).
In addition, we tested whether we could replicate our findings
using different parcellation schemes. Focusing on the prediction
of fluid intelligence, we observed significant correlations between
predicted and measured intelligence scores using CPM with
all three atlases (Brainnetome: r(316)= 0.26, p < 0.001, HCP:
r(316)= 0.18, p= 0.001, AAL: r(316)= 0.19, p < 0.001). We also
achieved fingerprinting accuracies of >90% for all atlases, with the
HCP MMP 1 atlas resulting in accuracies of up to 99% (Suppl.
Table 4). Our findings concerning a lack of overlap between
discriminatory and predictive edges held true for between-net-
work, anatomical and single-edge overlap (Brainnetome: n= 3/
301, p= 0.137, HCP: n= 3/646, p= 0.164, AAL: n= 0/67,

p= 0.269) in all three parcellation schemes (Fig. 5a, b). We were
also able to replicate the relationship between edge-variability and
fingerprinting, showing a high overlap between the most dis-
criminatory edges and edges with high standard deviation
(Fig. 5c), as well as the significantly lower variability in edges
predictive of behaviour (Fig. 5d).

Discussion
In the present study, we show that fingerprinting signatures and
behavioural prediction rest on highly distinct functional systems
of the human connectome. We were able to replicate the seminal
findings by Finn et al.7, demonstrating high accuracy in partici-
pant identification with connectome fingerprinting as well as the
importance of within-network edges in higher-order resting-state
networks for both prediction and fingerprinting. These findings
could be interpreted as supporting the functional relevance of
fingerprinting signatures, that is, networks that best discriminate
individuals from one another are also strongly involved in cog-
nitive function5,7. However, these findings were restricted to a
specific level of analysis (group-level within-network connec-
tions), motivating further exploration of the relationship.

We found evidence of a strong divergence between functional
signatures supporting the prediction of behaviour and dis-
criminability of the connectome. This held true on a network
level when we considered both within as well as between-network
connections, on the level of single edges, and on the level of the
large-scale spatial organisation of discriminatory and predictive
nodes. In addition, as a positive control, we directly used the
edges with the highest discriminatory potential for the prediction
of behaviour and found this to be unsuccessful, further corro-
borating our findings. To address the many degrees of freedom in
the design of the analysis, we also show that our findings are
highly robust against varying methodological choices. Specifically,
we used four parcellation schemes, two prediction methods, and
tested different feature selection thresholds. In sum, the results
presented here suggest that discriminatory and predictive sig-
natures of the human connectome rely on highly distinct func-
tional systems.

Table 3 Behavioural prediction results using discriminatory
edges for model construction.

Psychometric variable Correlation p values Participants (n)

Fluid intelligence −0.19 0.069 319
Grip strength −0.04 1 319
Picture vocabulary 0.03 1 320

All p values are FDR-corrected.

Fig. 3 Spatial distribution of node degrees. Distribution of node degrees for discriminatory nodes a and behaviourally predictive nodes (b–d) on the left.
The edges underlying the node degrees are thresholded at the 99th percentile and p < 0.01 respectively. The right-hand side displays the spin permutation
results, with red lines marking the empirical correlation of discriminatory and predictive nodes.
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In this regard, our findings expand on the recent notion of a
dichotomy between resources valuable for identification and
behavioural prediction12. Although this dichotomy has been
shown to apply with respect to different imaging modalities, here
we show the separation to be present within a single modality. In
this context, we show that variability of individual edges strongly
distinguishes between fingerprinting and prediction signatures,
and propose this variability to be at the root of the dichotomy.
Discriminatory edges, but not predictive edges, showed a sub-
stantial overlap with edges that are highly variable across parti-
cipants. The different mechanisms underlying fingerprinting and
prediction might clarify these findings. In CPM, edges which
show a significant correlation between functional connectivity
and a behavioural outcome measure in the sample are selected as
features. Thus, CPM is still a group-level procedure and requires
edge variation to be linearly related to behaviour in order to be
selected for prediction. In the framework of SVR, the feature
selection is interdependent, i.e., the weight of a specific feature
depends on the additional amount of information supplied
beyond other features. Nevertheless, similarly to CPM, the edge
variation also must be linearly related to variability in behaviour.
In contrast, in fingerprinting, edges are selected based on intra-
subject similarity, given sufficient inter-subject variability.
Importantly, no group relationship is considered here. Prediction
methods and fingerprinting thus relate differently to edge varia-
bility, i.e., edges selected in prediction need to covary with
behaviour, whereas fingerprinting is impartial to the source of
edge variability. Therefore, the high variability of functional
connections selected in fingerprinting could result from a range of
sources. For example, variations could stem from differences in
functional network topology17 or structural variabilities such as
differences in cortical thickness15 or folding patterns29. These
differences might also result in stable variation in functional
connectivity, whilst not necessarily relating to behaviour in a
linear fashion. As such, increased variability in multimodal brain
regions15,30,31 may lead to a higher likelihood of individual-
specific variation from different sources. Consequently, we
observe clusters of discriminatory edges in these regions when
averaging the discriminatory potential of individual edges over all
participants. The significance of these functional variations is
difficult to discern. Our results, however, point to the variation
exploited during fingerprinting not being related to behaviour.

Further research will be necessary to establish whether edge
variability also serves as a separating marker in other imaging
modalities and whether the findings by Mansour and colleagues12

might be supported by the relationship between signal variability,
fingerprinting and behavioural prediction proposed here.

In the present work, we aimed to closely follow Finn et al.7 in
the preprocessing steps and used the same methods for the
identification of participants, the prediction of behaviour and the
extraction of high-value edges for fingerprinting. Furthermore, we
mirrored the data analysis pipeline, initially focusing on within-
network edges. Although we found functional connectivity to be a
significant predictor of fluid intelligence with an accuracy similar
to other published work14,32,33, we did not achieve the high
prediction scores reported by Finn et al.7. There are different
possible explanations for this, one of them being our use of the
unrelated sample from the HCP database. This sample has the
advantage of being larger and thus more robust to overfitting, and
it assures the independence between participants during cross-
validation (CV)34. However, this independence might have
influenced our prediction accuracies. Furthermore, we used 10-
fold CV instead of leave-one-out CV35.

Taken together, we show that participant identification and
behavioural prediction from individual connectomes rely on
highly distinct functional brain systems. This divergence raises
the question of what the variability sustaining individual finger-
prints ultimately relates to. Parsimony suggests that neurological
variation should also be linked to phenotypic presentation, yet
our results indicate that there is no simple one-to-one mapping
between function and fingerprints. As such, further methodolo-
gical development and conceptualisation will be necessary to
deepen our understanding of individual functional signatures and
their behavioural and biological significance.

Methods
Data set. We used the unrelated subjects sample (n= 339, 156/183 m/f, ages
22–35) from the full release of the publicly available Human Connectome Project
data set36. In our prediction analysis, we excluded participants that had missing
behavioural data in a case-by-case fashion (Table 1). The HCP scanning protocol
was approved by the local Institutional Review Board of Washington University in
St. Louis, MO, USA, and informed consent was obtained from all participants, the
details of which are described elsewhere36. In brief, for resting-state fMRI (rs-
fMRI), whole-brain multiband gradient-echo-planar images were acquired on a 32-
channel 3 T Siemens “Connectome Skyra” scanner with TR= 720 ms, TE= 33.1

Fig. 4 Overlap of discriminatory edges and high-variability edges. a Black lines designate overlapping edges between the top one, two or five percent of
discriminatory edges and high-variability edges. Grey lines depict non-overlapping discriminatory edges. b Shows the distribution of edge standard
deviation across participants. In the boxplot, the middle line signifies the median, the lower and upper hinges correspond to the first and third quartiles and
the upper and lower whisker represent 1.5 times the respective interquartile ranges. All points outside of whiskers are outliers. ***p < 0.001, FDR-corrected.
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ms, flip angle= 52 degrees, bandwidth= 2290 Hz/pixel, in-plane field of view=
208 × 180 mm2, 72 slices, 2 mm isotropic voxels and 1200 volumes (14 min and
24 s). Rs-fMRI sessions were acquired left-to-right (LR) and right-to-left (RL).
Furthermore, there were two separate rs-fMRI sessions for each individual (“rest 1”
and “rest 2”) acquired on two different days.

rs-fMRI preprocessing. We closely followed Finn et al.7 in our preprocessing
pipeline and used the minimally preprocessed rs-fMRI data set37. This included
gradient distortion correction, motion correction, image distortion correction,
registration to MNI standard space and intensity normalisation. We then used the
CONN toolbox38 for SPM12 to regress out 12 motion parameters (provided with
the HCP data set under Movement_Regressors_dt.txt), mean time courses of white
matter, CSF, and the global grey matter signal (approximating global signal). Linear
trend was removed and the data were band-pass filtered (0.01–0.1 Hz). We did not
perform any smoothing. The resulting voxel-wise time series were parcellated using
four different atlases: for the main analyses, we used the Shen atlas with 268 nodes7

(i.e., regions of interests (ROIs)); for validation, we used the Brainnetome atlas39,
the HCP multimodal parcellation (MMP) 1.0 atlas40, and the AAL (Automated
Anatomical Labelling) atlas41. For every parcellation scheme, we extracted the
nodal time series by averaging over all voxels within the respective ROI.

The Shen atlas is a whole-brain atlas derived from functional connectivity and
defined using a group-wise spectral clustering algorithm42. The three other atlases
cover different levels of detail as well as different approaches to the definition of
nodes. The AAL atlas provides an anatomy-based parcellation with 90 cortical and
26 cerebellar nodes41. The Brainnetome Atlas39 is a whole-brain atlas containing a
similar number of nodes to the Shen atlas (210 cortical and 36 subcortical nodes)
and is defined using both anatomical and functional connections. HCP MMP 1.0 is
a detailed cortical in-vivo parcellation with 360 nodes40. We acquired resting-state
network definitions for all four atlases. The Shen and Brainnetome atlases provide
resting-state network definitions for each node, and for the latter, these are based
on the established Yeo-7 resting-state networks43. Since the Yeo-7 network
definition does not assign subcortical nodes to a network, we created an eighth
subcortical network. For the HCP MMP 1.0, we relied on network assignments by
Ji et al.44, partitioning the 360 nodes into 12 resting-state networks. The AAL nodes
were split into five resting-state networks based on previously established network
definition45. Here, we created a sixth cerebellar resting-state network including all
cerebellar nodes.

Functional connectome. Individual functional connectomes were built as func-
tional connectivity matrices calculated as the Pearson correlation between the time
courses of all region-to-region pairs. In the framework of functional brain

Fig. 5 Control analyses for different functional atlases. Results for Brainnetome, HCP MMP 1.0, and AAL atlases (left-to-right). From top to bottom,
panels visualise a within and across-network connections, b spatial topology and spin permutation of nodes for fluid intelligence and fingerprinting, c the
overlap of individual edges between highly discriminatory and high-variability edges, and d the distribution of edge standard deviations over participants in
fingerprinting and behavioural prediction. In the boxplots, the middle line signifies the median, the lower and upper hinges correspond to the first and third
quartiles and the upper and lower whisker represent 1.5 times the respective interquartile ranges. All points outside of whiskers are outliers. ***p < 0.001,
FDR corrected.
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networks46, each ROI represents a network node, and the connection between two
ROIs represents an edge in the network.

Each participant has two resting-state scans (LR and RL encoding) by session, thus
creating four functional connectivity matrices by individual. We averaged the two
matrices from one session (LR and RL), resulting in two final matrices (one
per session) for every individual (matrix dimension: number of nodes by number of
nodes, the exact number depending on the parcellation scheme). The final functional
connectivity matrices were z scored, and the upper triangle was vectorized.

Functional connectome fingerprinting. Fingerprinting was performed as in Finn
et al.7. In brief, the functional connectome of a ‘source’ participant at timepoint t1 is
used to identify the same participant at time point t2, referred to as ‘target’. The target
session is identified from a pool of functional connectomes containing both the target
connectome as well as connectomes of other ‘distractor’ participants. Identification is
performed by correlating the FC vector of the ‘source’ from one of the two scanning
sessions (e.g., “rest 1”) with the FC vectors of all 339 participants (including the
‘target’) in the other session (e.g., “rest 2”), resulting in 339 correlations. The parti-
cipant with the highest correlation coefficient is picked and assigned a score of 1 if the
picked participant matches the target identity (hit), and a score of 0 otherwise (miss).
This procedure was applied for all possible session 1 to session 2 source-target pairs
(i.e., 339 identifications) and then repeated once more for all session 2 to session 1
source-target pairs (again 339 identifications). At last, we performed a nonparametric
permutation test with 1000 permutations to examine the statistical significance of our
identification analysis. In each permutation, the target participant’s and distractor
session’s identity were randomised and fingerprinting accuracy was recorded. P values
were then calculated as the proportion of randomly permuted instances exceeding the
empirically observed accuracy over all permutations.

Network and edge contributions to fingerprinting. The analysis scripts with
example data can be accessed in a public repository at (https://doi.org/10.5281/
zenodo.4557011). To assess the contribution of different resting-state networks, we
calculated the differential power of different edges (i.e., node-to-node connections)
using publicly available scripts by Finn and colleagues7. Differential power of an
edge reflects an edge’s ‘uniqueness’ and stability and thus its ability to differentiate
an individual. First, we exclusively investigated the differential power of within-
network edges in order to reproduce the original analysis. Here, we averaged the
differential power of all within-network edges by their respective network,
including edges with zero differential power. Second, we repeated the analysis
including between-network connections. We then averaged the differential power
between and within the different resting-state networks, creating a complete
network-by-network matrix of differential power.

Psychometric prediction. For prediction, we used the Connectome-based Pre-
dictive Modelling approach (CPM)27 and adapted the openly available script from:
https://www.nitrc.org/frs/?group_id=51. Using this framework, we predicted 30
psychometric variables supplied in the HCP data set (see Suppl. Table 2). In our
main analysis, we focus on three behavioural variables of interest and provide
further results in the supplement. Specifically, we focused on the fluid intelligence
score assessed by Penn Progressive Matrices used previously7,47. To broaden the
scope of our analysis and examine psychometric variables unrelated to fluid
intelligence, we selected two additional psychometric variables, grip strength and
language comprehension (assessed using the Picture Vocabulary Task) based on
their low correlation with fluid intelligence (r= 0.02 and r= 0.20, respectively;
Suppl. Table 1 for all correlations).

Behavioural prediction with CPM consists of three steps: feature selection, model
building and prediction. Features are selected by calculating the Pearson correlation
between each edge in the training set and the psychometric variable. Edges are
separated into correlated and anti-correlated edges and thresholded. Here, we tested:
p < 0.05, 0.01, 0.005 and 0.001 following previous work7. Next, the thresholded
correlated and anti-correlated edges are summed up, resulting in two summary
values (a positive set and a negative set). Positive and negative summary values are
used as a predictor of the measured cognitive variable in two linear regressions using
least squares estimates. In the last step, positive and negative summary values are
calculated for every participant in the test set using the same features identified
during the feature selection step. The summary network strengths are then used to
predict the cognitive variable. For a detailed description of CPM see7,27.

We used 10-fold CV repeated 100 times, resulting in 10 × 100 measures of
accuracy. To evaluate model accuracy, we collected the predicted cognitive scores
for each participant in each repeat of our CV (i.e., 100 predictions per participant),
and averaged across all repeats, following Nostro et al.48. To evaluate the
significance of the relationship between the predicted and the measured scores, we
performed permutation testing with 1000 permutations. In each permutation, we
correlated the averaged predicted scores with the measured cognitive scores found
in the HCP data. The p value (right-tailed) was calculated by dividing the
permutations that exceeded the non-permuted correlation value by the number of
permutations plus one.

At last, we used an additional prediction method (support vector regression) to
evaluate, whether the observed overlap of discriminatory and predictive edges held

using different classifier types, independently of CPM. To this end, we repeated the
above prediction procedure but removed the feature selection and model building
steps used in CPM and instead used SVR for model building. SVR parameters were
set at default values with no hyperparameter optimisation (linear kernel, C= 0.75,
Regularisation= Lasso, Lambda= 0.0035). We extracted the highly predictive
edges using the sorted SVR weights, which were thresholded and binarized for the
subsequent overlap analysis. All edges selected in at least 80% of CV folds during
prediction were used, resulting in the binarized matrix (described below).

Overlap between differential power, predictive power, and high variability. To
perform our overlap analysis, we required binarized matrices of edges with high
discriminatory potential and edges predictive of behaviour. For discriminatory
potential, we thresholded the complete matrix of differential powers, setting all
values below the 99th percentile to zero and all others to one, thus resulting in a
sparse binary matrix. Highly predictive edges were thresholded by keeping all edges
selected (i.e. significant at p < 0.001, 0.005, 0.01, or 0.05) in at least 80% of the CV
folds during prediction, also resulting in a sparse binary matrix. In a final step, the
overlap was obtained by overlaying the two resulting matrices and calculating the
intersection of positive values. To assess the overlap of highly discriminatory and
high-variability edges, we overlaid the differential power matrix with a matrix of
standard deviations in functional connectivity across participants, thresholded at
the 99th percentile. Other thresholds were also assessed (see Supplementary Fig-
ures 2 and 3 for visual representation and Supplementary Table 5 for overlap
between the three tested psychometric variables and discriminatory edges).

Furthermore, we investigated the distribution of the standard deviations across
all edges of the connectome, edges with high differential power, and edges
predictive of the different psychometric variables. To assess if edge-to-edge
overlaps were statistically larger than would be expected by chance, we performed a
permutation test with 1000 permutations. In each permutation, we calculated the
intersection between fingerprinting edges and a degree-preserving random matrix
(preserving degrees of the predictive or SD matrix) using the Brain Connectivity
Toolbox46.

Topographical localisation. To localise regions important to either fingerprinting
or the prediction of psychometric variables, we calculated the node degree for each
region by summing up the number of connected edges in the sparse differential
power matrix (in fingerprinting) and in the matrices of predictive edges (in psy-
chometric prediction). To compare the topographical organisation found in fin-
gerprinting and in prediction, we calculated the Spearman correlation between
their node degrees and tested for significance of the topological overlap using spin
permutation testing with 5000 permutations49,50. Spin permutation allows for
correlational analyses of cerebral topology while conserving spatial data properties
such as non-independence among neighbouring parcels.

Statistics and reproducibility. All fMRI resting-state data were preprocessed in
Matlab2019b using the CONN toolbox (version 18b) for SPM12. Parcellation,
functional connectivity (‘corr’ function), behavioural prediction and overlap ana-
lysis were also calculated in Matlab2019b using custom scripts (available here:
https://doi.org/10.5281/zenodo.4557011). Fingerprinting analysis, statistics and
visualisations were made using RStudio (R version 3.5.1).

Both minimally preprocessed brain-imaging data and psychometric
variables were obtained from the Human Connectome Project website (https://
db.humanconnectome.org/). All results reported here can be directly
reproduced using the provided scripts, given additional preprocessing of the
Human Connectome Project data (for details see above) or conceptually
reproduced using functional connectivity matrices calculated from resting-state
fMRI recordings available in other data sets. All intermediate output can be
shared upon request.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data are from the publicly available HCP repository and can be accessed at http://
www.humanconnectomeproject.org/data/36. The list of unrelated participants used here
can be accessed at https://wiki.humanconnectome.org/display/PublicData/
S900+Unrelated+Subjects+CSV. Source data underlying the main figures are presented
in Supplementary Data 1.

Code availability
All scripts and resources utilised in the analysis reported here can be accessed in a public
repository at (https://doi.org/10.5281/zenodo.4557011).
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