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INTRODUCTION

Myelin oligodendrocyte glycoprotein (MOG) immunl-
globulin (Ig)G antibody-associated disorders (MOGAD) 

describe a new entity of demyelinating neurological syn-
dromes defined by the presence of serum IgG autoanti-
bodies against MOG detected by cell-based assays (1–3). 
MOGAD occur in both children and adults and comprise 
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Abstract
Myelin oligodendrocyte glycoprotein antibody-associated disorders (MOGAD) are 
rare in both children and adults, and have been recently suggested to be an auto-
immune neuroinflammatory group of disorders that are different from aquaporin-
4 autoantibody-associated neuromyelitis optica spectrum disorder and from classic 
multiple sclerosis. In-vivo imaging of the MOGAD patient central nervous system 
has shown some distinguishing features when evaluating magnetic resonance im-
aging of the brain, spinal cord and optic nerves, as well as retinal imaging using 
optical coherence tomography. In this review, we discuss key clinical and neuroim-
aging characteristics of paediatric and adult MOGAD. We describe how these imag-
ing techniques may be used to study this group of disorders and discuss how image 
analysis methods have led to recent insights for consideration in future studies.
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a heterogeneous disease spectrum (4,5). Clinical presen-
tation can include monophasic or recurrent episodes of 
optic neuritis (ON), myelitis, brain stem syndromes, acute 
disseminated encephalomyelitis (ADEM) and symptoms 
of encephalitis such as seizures (6,7). MOGAD are rare, 
with an incidence of 1.1–2.4 per million people (8) and 
are more frequent in children compared with adults, as 
reported in a recent Dutch cohort with an incidence of 3.1 
per million in children (9).

A direct pathophysiological effect of the MOG-IgG 
in the central nervous system (CNS) has yet to be elu-
cidated (2). It remains unclear whether MOG-IgG has a 
direct pathogenic role or whether it is a biomarker re-
flecting an immunological response from disrupted my-
elin in the MOG-IgG-associated demyelinating disease 
spectrum. Increasing clinical and pathological evidence 
now strongly indicates that MOGAD represent a distinct 
disease entity different from other neuroinflammatory 
and demyelinating diseases, such as multiple sclerosis 
(MS) or aquaporin-4 (AQP4) IgG-positive neuromyeli-
tis optica spectrum disorder (NMOSD) (10–15). These 
conditions apparently exhibit differential responses to 
immunotherapies, underscoring the necessity for ac-
curate and timely diagnostic procedures during which 
neuroimaging plays a paramount role (16–21). Due to 
the widespread nervous system affection in MOGAD, 
magnetic resonance imaging (MRI) and optical coher-
ence tomography (OCT) are important imaging tools in 
gaining more knowledge concerning the disease and for 
the monitoring of patients with this rare set of disor-
ders (22,23). This review article will give an overview of 
the clinical, radiological and advanced imaging aspects 
which are currently of high interest for the MOGAD 
clinical research community.

MOGAD CLINICAL 
PRESENTATIONS

The clinical phenotype of MOGAD is broad, and in-
cludes uni-  and bilateral anterior ON, long and short 
transverse myelitis (TM), ADEM, brain stem encephali-
tis and cortical encephalitis with or without seizures (2). 
In addition, combinations of these syndromes can occur, 
e.g. as NMOSD-like phenotype presenting with ON and 
TM (12). Importantly, the clinical phenotype strongly 
depends upon age, with a more ADEM-like phenotype 
in children and a more optico-spinal phenotype in ado-
lescents and adults (2). In paediatric patients, the follow-
ing four phenotypes account for 90% of MOGAD cases: 
46% presenting with ADEM, 30% with ON, 11% with 
TM and 4% with a NMOSD-like phenotype (ON + TM) 

(24). Relapses in both children and adults have been de-
scribed in 40–80% of patients, especially in the form of 
ON (6,25–27).

Acute disseminated encephalomyelitis

MOG-IgG serum antibodies were first identified in a 
subset of children with ADEM (28,29). Children with 
ADEM represent the most common phenotype among 
all MOGAD patients, and account for almost 50% of 
paediatric MOGAD patients (2,24). Clinical presenta-
tion of ADEM includes polyfocal neurological deficits 
and encephalopathy (i.e. behavioural changes or altered 
consciousness) not explainable by fever (30). It has re-
cently been shown that up to 50% of all children with 
ADEM are seropositive for MOG-IgG (31). In these pa-
tients, MOG-IgG seroprevalence is associated with a 
higher risk for longitudinally extensive transverse my-
elitis (LETM), but with resolution of brain lesions and a 
better outcome compared to MOG-IgG-negative ADEM 
patients (32). Relapses can occur with further episode(s) 
of ADEM as multi-phasic ADEM (MDEM), with ON 
(ADEM-ON) or with transverse myelitis (ADEM-TM) 
(33). However, up to 75% of MOG-IgG-seropositive 
ADEM patients become seronegative within months, 
which highly correlates with a monophasic disease 
course (34). In contrast, persistent seroprevalence of 
MOG-IgG is strongly associated with an increased risk 
for relapsing disease (35,36).

Optic neuritis (ON)

ON is the most common clinical presentation of MOGAD 
in adults, comprising more than 50% of MOGAD phe-
notypes at onset, as shown by three large national stud-
ies from the United Kingdom, France and Sri Lanka 
(6,25,37). Clinical symptoms of ON include blurred vi-
sion and reduced visual acuity or visual loss as well as eye 
pain, especially retrobulbar pain with eye movement (38). 
ON in MOGAD is often bilateral, either concurrently or 
sequentially (39,40). Up to 25% of patients present with 
bilateral ON at disease onset (41). Bilateral ON repre-
sents an important clinical presentation that can help to 
differentiate MOGAD-ON from ON in multiple sclerosis 
(MS-ON). Meanwhile, the incidence of bilateral ON is 
less differential when evaluating its presence in MOGAD 
versus AQP4-IgG-positive NMOSD (42). Differences in-
clude a more anterior affection of the optic nerve in 
MOGAD with optic nerve head swelling and retrobulbar 
involvement.
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Myelitis

Myelitis is the second most common clinical presenta-
tion in adult MOGAD patients as it accounts for 20% of 
disease-related attacks, but is less common in children 
(9,25,37). LETM, defined as a spinal cord lesion spanning 
three or more vertebral segments in length, is a character-
istic finding in MOGAD (43). Typical symptoms include 
motor and/or sensory deficits (numbness), bladder, bowel 
and/or erectile dysfunction (43). Neuropathic pain has 
been implicated in NMOSD to be related to the level(s) at 
which spinal cord lesion(s) are located, which could also 
be the case in MOGAD patients, as 86% of MOGAD pa-
tients in one study reportedly suffered from chronic pain 
(44–47). Clinical differences distinguishing myelitis in 
MOGAD versus MS or AQP4-NMOSD include: a higher 
skew towards males, higher frequency of bladder and 
erectile dysfunction, younger age, prodromal infection 
and concurrent ADEM. Short myelitis (lesions spanning 
fewer than three vertebral segments) can also occur, and 
is found in up to 38% of MOGAD cases (48,49). Sphincter 
involvement has also been found to be more prevalent 
in MOGAD patients with LETM compared to those with 
short myelitis (80 versus 50% (49).

Neuromyelitis optica spectrum disorder 
(NMOSD)

A combination of ON and/or myelitis is the classical 
clinical phenotype of NMOSD. Neuromyelitis optica 
(NMO) was traditionally characterized by recurrent 
uni-  or bilateral ON and TM and was later expanded 
to a broader spectrum with restricted or extended 
forms, including brain stem syndromes, referred to 
NMOSD (12,50,51). Approximately one-third of AQP4-
IgG-negative NMOSD patients harbour IgG serum au-
toantibodies against MOG (12,52). As the presenting 
phenotype in MOGAD, NMOSD occurs in 5–20% of pa-
tients (6,25,53). Therefore, in patients with an optico-
spinal phenotype, MOGAD represents an important 
differential diagnosis to AQP4-NMOSD, especially 
as the combination of myelitis with ON seems to be 
more common in MOGAD compared to AQP4-NMOSD 
(12,53,54): up to 10% of MOGAD patients present with 
simultaneous ON and TM compared to only 4% in AQP4-
NMOSD (12). It should be noted that a recent large study 
by Tajfirouz et al. found that involvement of the optic 
chiasm was more frequent in both AQP4-NMOSD (20%) 
and MOGAD (16%) than have been thought previously, 
although MOGAD chiasmal involvement is more prob-
ably associated with a longitudinally extensive optic 
nerve lesion (55). Similar to AQP4-NMOSD, MOGAD 

can also present with brain stem symptoms, including 
intractable nausea, vomiting and hiccups, described as 
area postrema syndrome (56). However, this syndrome 
is rare (2–5%) in MOGAD (12,57).

Encephalitis

Epileptic seizures were repeatedly described in a subgroup 
of MOGAD patients and are more common than in AQP4-
IgG-seropositive NMOSD (58–60), occurring in 20% of all 
adult and paediatric MOGAD patients (61).

Encephalitis with and without seizures is now be-
coming increasingly recognized as an important clinical 
phenotype of MOGAD (61). Patients present with neuro-
psychiatric symptoms, behavioural changes, seizures and 
memory or speech problems (62). Recently, encephalitis 
with MOG-IgG has been described as the most common 
type of autoimmune encephalitis in children, accounting 
for 34% of all children presenting with encephalitis other 
than ADEM (63).

Other rare types of clinical presentation

Another rare presentation of MOGAD is found in children 
who show similar symptoms of ADEM with a progressive 
disease course (64). The clinical course and symmetrical 
confluent cerebral MRI changes resemble that of chil-
dren with leukodystrophy, leading to its description as a 
‘leukodystrophy-like phenotype’. Recently, overlapping 
central and peripheral nervous system syndromes have 
been described as potential additional MOGAD pheno-
types, including cranial nerve involvement, myeloradicu-
litis, inflammatory neuropathies and combined central 
and peripheral demyelination syndromes (65–69).

MRI IN MOGAD

MRI abnormalities in MOGAD can be detected in the 
brain, the optic nerve and/or the spinal cord, depend-
ing upon the clinically affected anatomical region of the 
nervous system (70). MOGAD patients are often scanned 
after a first presentation of ON, LETM and/or other clini-
cal symptoms; thus, most imaging findings are cross-
sectional and follow-up imaging data is scant. On cerebral 
MRI, findings in children mainly reflect signs of ADEM 
with diffuse, widespread white matter T2 lesions, while in 
adults cerebral MRI is either normal or shows brain stem 
or cortical lesions (2). Acute ON can lead to swelling of the 
optic nerve and to severe retinal neurodegeneration over 
time (71–74). Typical MRI findings of ON in MOGAD are 
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long lesions in the anterior part of the optic nerve with 
periorbital enhancement and often bilateral affection 
(42). Spinal cord lesions in MOGAD can be visualized 
using MRI typically showing LETM affecting mainly the 
grey matter, as seen as an ‘H-sign’ on the axial plane (43). 
Important differential disease diagnoses via MRI findings 
in MOGAD include its distinction from MS and AQP4-
IgG seropositive NMOSD (75,76). The following sections 
describe common radiological presentations found in 
both adult and paediatric MOGAD (Table 1), as well as 
advanced MRI techniques with the potential to further 
evaluate CNS changes in these disorders. Table 1 indicates 
the likelihood of observing these radiological features, 
where positive (greater) and negative (lesser) symbols de-
note comparative prevalence between the adults and pae-
diatric patients. Brackets around the positive and negative 
symbols denote rare observations.

Radiological presentation on clinically 
routine MRI

Cerebral MRI

Cerebral MRI changes in MOGAD are highly depend-
ent upon age. In children, typical MRI findings of ADEM 
are found in 40–50% of MOGAD cases (7). These include 

widespread supra-  and infratentorial, asymmetrical dif-
fuse white matter T2 hyperintensive lesions (32,77). In a 
small cohort, additional bilateral thalamic lesions were 
found in more than 80% of paediatric MOG-IgG-positive 
compared to only 10% of MOG-IgG-negative ADEM pa-
tients (78). In adults, brain MRI lesions are typically few 
and either found infratentorially or presenting as cortical 
lesions (79,80); however, there have been observations of 
large, confluent T2 hyperintense lesions in the white mat-
ter similar to ADEM (11).

Brain stem lesions can be found in up to 30% of adult 
MOGAD patients (6,81). These lesions are typically poorly 
demarcated, located in the pons around the fourth ventri-
cle or the cerebellar peduncles, and resolving over time 
(79). Isolated brain or brain stem lesions in adults are rare 
(approximately 5%). However, brain lesions are found in 
45% of initial cerebral MRI scans in adult MOGAD pa-
tients, mainly in combination with optico-spinal lesions 
(6). One patient presented with an initial MRI pattern 
typical of chronic lymphocytic inflammation with pon-
tine perivascular enhancement responsive to steroids 
(CLIPPERS) and then subsequently developed LETM 
leading to a diagnosis of MOGAD (82).

Isolated T2 hyperintense cortical lesions visible on 
fluid-attenuated inversion recovery (FLAIR) sequences in 
both adult and paediatric patients with seizures were iden-
tified and referred to as FLAMES: FLAIR-hyperintense le-
sions in anti-MOG-associated encephalitis with seizures 
(80,83). In these patients, cerebral MRI reveal unilateral 
or bilateral cortical T2 hyperintense lesions, but can also 
include deep grey matter, white matter and brain stem 
lesions (58,60,84). In paediatric MOG-associated autoim-
mune encephalitis, cerebral MRI findings include exten-
sive cortical and/or subcortical grey matter involvement 
without the typical white matter lesions seen in ADEM 
(4,63). Importantly, cerebral MRI in these children was 
normal in only 9% of the cohort, which is comparatively 
lower than other types of autoimmune encephalitis such 
as anti-N-methyl-D-aspartic acid or N-methyl-D-aspartate 
(NMDA)-receptor encephalitis, where MRI can be normal 
in 50% of the patients (85). In young children presenting 
with the rare leukodystrophy-like MOGAD phenotype, ce-
rebral MRI shows extensive confluent symmetrical white 
matter lesions with progression over time (64).

As MOGAD represents an important differential diag-
nosis from MS and AQP4-NMOSD, several studies have 
assessed potential differences using radiological features 
on MRI. A distinct pattern of MRI lesions defined by the 
so-called Matthews–Jurynczyk criterion can help to differ-
entiate MOG-NMOSD versus MS. This criterion strongly 
favours MS over MOGAD, when: (i) ≥ 1 lesion(s) adjacent 
to a lateral ventricle and in the inferior temporal lobe, (ii) 
subcortical U-fibre lesions and (iii) Dawson’s finger-type 

T A B L E  1   Comparisons of MRI findings in adult versus 
paediatric MOGAD patients

MRI finding
Adult 
MOGAD

Paediatric 
MOGAD

Brain

Typical ADEM-like lesionsa  (−) +b 

Brain stem lesions +c  (+)

Cortical lesions + (+)

Optic nerve

Extensive optic neuritisd  + +

Optic perineuritise  (+) (−)

Spinal cord

LETMf  + +

Short myelitis + +
aAcute disseminated encephalomyelitis (ADEM): widespread supra- and 
infratentorial, asymmetrical diffuse white matter T2-hyperintensive lesions.
bIn 40–50% of paediatric adult myelin oligodendrocyte glycoprotein 
associated disorders (MOGAD) cases.
cIn up to 30% of MOGAD patients.
dExtensive (uni-/bilateral) anterior T2 hyperintense optic nerve lesions, 
nerve swelling and gadolinium enhancement.
ePerineural or periorbital gadolinium enhancement in the orbital soft tissue.
fLongitudinally extensive transverse myelitis (LETM): spinal cord lesion 
spanning three or more vertebral segments in length.
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lesions are present (79,86,87). However, these studies 
did not report criteria to help to discriminate between 
MOGAD and AQP4-NMOSD patients (88). Both MOGAD 
and AQP4-NMOSD patients can present with lesions in 
the brain stem (79,87), while cortical and juxtacortical 
lesions are more frequently found in MOGAD versus 
AQP4-NMOSD patients (57 versus 0%). Meanwhile, the 
area postrema syndrome that often affects AQP4-NMOSD 
patients with its corresponding MRI lesions (50%) does 
not seem to be a characteristic feature in MOGAD (7%) 
(Figure 1) (57).

MRI findings in ON can include T2 hyperintense le-
sions, nerve swelling and gadolinium enhancement of the 

affected optic nerve on T1-weighted imaging. In MOG-ON, 
optic nerve lesions are usually extensive, also termed longi-
tudinally extensive ON (LEON), affecting more than half of 
the pre-chiasmatic optic nerve length (42,89,90). MOG-ON 
also predominantly affects the anterior part of the optic 
nerve. This can help with differentiating MOG-ON from 
AQP4-ON, which is also often extensive, but predominantly 
affecting the posterior part of the optic pathway (including 
the optic chiasm) (42,91–93). Although MS-ON typically in-
volves shorter segments of the optic nerve compared to both 
MOG-ON and AQP4-ON, bilateral ON, with bilateral radio-
logical optic nerve involvement, is found in more than 80% 
of MOG-ON and AQP4-ON patients compared to only 20% 

F I G U R E  1   Cerebral magnetic resonance imaging (MRI) in paediatric myelin oligodendrocyte glycoprotein-associated disorders 
(MOGAD). (a,b) Axial T2-weighted fluid-attenuated inversion recovery (FLAIR) MRI sequences of a 3-year-old female MOG-
immunoglobulin (Ig)G-positive acute disseminated encephalomyelitis (ADEM) patient showing bilateral white matter and deep grey matter 
thalamic lesions. (c) Axial T2-weighted MRI sequence of a 12-year-old female patient with MOG-immunoglobulin (Ig)G-positive ADEM and 
bilateral optic neuritis (ON) showing optic nerve swelling and hyperintensity
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in MS-ON (41). Additionally, in paediatric patients, bilateral 
ON has been associated with higher MOG-IgG titres (39,42). 
Another characteristic feature described in MOG-ON is 
perineuritis with perineural or periorbital gadolinium en-
hancement in the orbital soft tissue that is not typically 
found in MS-ON (Figure 2) (53,89,90,94–96).

Spinal cord MRI

Typical spinal cord MRI changes in both children and 
adult MOGAD patients are TM, often in the form of 
LETM, but also as short myelitis (12,48). LETM is found 
in more than 70% of MOGAD patients with spinal cord 
involvement, mainly affecting the cervical and/or tho-
racic cord (43,49,53,77). LETM is also a main radiological 
feature in AQP4-NMOSD (48). Conus involvement and 
multiple spinal cord lesions have been more frequently 

observed in MOG-TM (40%) than in AQP4-TM (15%) to-
gether with multiple lesions observed 60% of the time 
in MOGAD (43,97,98). Short myelitis, which is typical 
of MS, can similarly be found in MOG-TM (up to 50% 
of cases); however, it is less frequently observed (~15%) 
in AQP4-TM patients (27,43,49,99,100). MOG-TM 
may present in spinal cord MRI as a hyperintense ‘H-
sign’ observed in the axial orientation, while imaged 
as a longitudinal thin vertical line in the T2-weighted 
sagittal plane image. This suggests a predominant af-
fection of the spinal cord grey matter, as opposed to 
AQP4-TM, which may not be as centrally located in the 
cord (43,101,102). Gadolinium contrast-enhancement of 
spinal cord lesions is detected in only 25% of MOG-TM 
cases compared to lesions in MS (75%) or AQP4-TM 
(80%) (43). Of note, spinal cord MRI can initially be nor-
mal in up to 10% of MOGAD patients with myelitis at-
tacks (Figure 3) (103).

F I G U R E  2   Spinal cord magnetic resonance imaging (MRI) in paediatric myelin oligodendrocyte glycoprotein associated disorders 
(MOGAD). Sagittal (a) and transversal (b) T2-weighted spinal cord MRI of a 12-year-old female patient with MOG-immunoglobulin (Ig)
G-positive acute disseminated encephalomyelitis (ADEM). (b) Longitudinally extensive transverse myelitis (LETM) with grey matter spinal 
cord affection presenting with the ‘H-sign’ and (a) as longitudinal hyperintense line. (c) Sagittal T2-weighted cervical cord MRI in a 3-year-
old female patient with MOG-IgG-seropositive ADEM (the same patient shown in Figure 1a,b)
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Structural and functional MRI 
analysis techniques

Structural and functional MRI analysis techniques in-
clude brain and spinal cord volumetric analyses, diffusion 
tensor imaging (DTI) and resting-state functional MRI. 
These techniques are usually not applied as part of the 
clinical routine work-up in MOGAD patients, and quan-
titative volumetric and/or microstructural grey and white 
matter analyses using advanced MRI techniques are few. 
Recent studies, however, have identified specific changes 
in MOGAD patients that are potential new imaging bio-
markers and tools for a clearer understanding of MOGAD 
disease pathology (23,104–106).

Although brain lesion distributions have been found 
to differ between MOGAD and AQP4-NMOSD patients, 
brain MRI volumetry did not show any differences 
in MOGAD patients compared to healthy controls in 
whole brain, deep grey matter or white matter volumes 
(104,107). However, there are conflicting results as to 
whether localized reductions in the volume of several grey 
matter structures exist (104,108). In children with ADEM, 
reduced brain volume and failure of age-expected brain 

growth was found for both MOG-IgG-seropositive and 
-seronegative patients (Bartels et al., submitted), similar 
to findings in paediatric anti-NMDA-receptor encephalitis 
and paediatric-onset MS (7,85,109).

Spinal cord MRI analysis could identify spinal cord 
atrophy in patients with MOGAD compared to healthy 
subjects, which was found to associate with increased 
counts of historical myelitis attacks. However, cord le-
sion frequency and atrophy was found to be less frequent 
compared to AQP4-TM (43,105), which is in line with 
clinical observations that MOGAD patients often recover 
their motor functions more completely than AQP4-TM 
patients (25). In MOG-myelitis patients, another study 
showed that the grey matter volume in the spinal cord was 
reduced during the acute phase of the attack (106), thus 
indicating that affection of grey matter might be a more 
common occurrence than previously thought. This also 
supports previous findings of long-term damage to cere-
bral grey matter.

Meanwhile, evaluating CNS changes using graph the-
ory and network statistical methods for elucidating clinical 
attack-related damage in NMOSD patients has also shown 
promise. Both cortical topological network changes and 

F I G U R E  3   Adult myelin oligodendrocyte glycoprotein-associated disorders (MOGAD) patient cerebral and spinal cord affection. (a) T2-
weighted fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) sequence in the axial orientation showing large, 
confluent hyperintense lesions in the white matter. (b) In the coronal view of the same cerebral scan as in (a), it can be seen that the lesions 
extend toward the cortex. (c) The T2-weighted spinal cord MRI shows short segment lesions, appearing to be located centrally in the cord
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deep grey matter volume changes have been detected in 
AQP4-NMOSD patients following ON attacks and in pa-
tients with a simultaneous combination of clinical attacks 
(108,110). These findings suggest that there may be non-
localized damage or affection in NMOSD, which could 
also be the case in MOGAD, and be of interest in cognitive 
impairment studies in these patients.

Using DTI, one study found decreased white matter 
integrity in adult MOGAD patients compared to healthy 
controls: specifically, reduced parallel diffusivity within 
whole-brain white matter tracts (104). Parallel or axial 
diffusivity characterizes diffusion along the long axis of 
the axonal tract; thus, a reduction in this measure may be 
associated with various mechanisms of axonal damage or 
injury, commonly thought to occur via Wallerian degen-
eration (111).

As demyelination represents a pathological hallmark 
in MOGAD, in-vivo imaging of myelin integrity could 
represent a promising technique to further identify dis-
ease mechanisms and disease courses in MOGAD (112). 
Further studies investigating white matter abnormalities 
may utlize quantitative techniques, such as T1-weighted/
T2-weighted intensity ratio, multi-parameter mapping 
and magnetization transfer MRI analysis. These advanced 
imaging analysis methods could help in the identification 
of more subtle MRI changes in MOGAD patients in the 
future (113–115). Recently, the underlying pathophys-
iology of neuroinflammation has been evaluated using 
quantitative susceptibility mapping (QSM) MRI in MS. 
QSM is a technique that allows for the quantification of 
magnetic susceptibility differences in a spatial manner to 
measure different para- and diamagnetic atoms (such as 
iron atoms) within tissue (116). In a relatively large MS 
cohort, it was found using QSM that depletions of myelin 
and iron concentration were associated with thalamic 
atrophy and disability (117), indicating that iron concen-
tration in the brain is a possible biomarker in neurode-
generation related to myelin damage. Another method 
of evaluating molecular changes in the brain is by using 
hydrogen-1-magnetic resonance spectroscopy (1H-MRS), 
which measures hydrogen proton concentrations attached 
to specific metabolites such as glutamate, choline and γ-
aminobutyric acid (GABA). Some small studies have 
found conflicting results in MS patients, however, due to 
the complex analysis methods and confound corrections 
required for robust results (118). Both QSM and MRS are 
relatively well established in many 1.5–3 Tesla MRI facili-
ties, and could be imaging analyses of interest for clinical 
immunologists and MOGAD researchers in the future.

Proton emission tomography (PET)-MRI research has 
allowed for more in-vivo molecular imaging, where radio-
nuclide tracers can be used to calculate myelin kinetics, 
concentrations of neuroinflammatory molecules and help 

to investigate pathophysiology (119). PET tracers rely 
upon the radiolabelling of antibodies or chemical chelates 
that bind to specific targets of interest (120). However, to 
detect the radioactive decay signals, X-ray computed to-
mography (CT) imaging is traditionally applied to first 
create an image for quantification of the signal (121), and 
currently very few PET-MRI systems are available glob-
ally. Often, PET research is conducted using both a CT and 
MRI (122). Thus, there are still some hurdles in applying 
this imaging method in a clinical setting, especially in rare 
diseases such as MOGAD.

Resting-state functional MRI connectivity allows for 
the study of functional connectivity alterations, such as 
in the visual or sensorimotor networks of the brain (123–
125). Recently, it was found that altered interhemispheric 
function in patients with MOG-ON can be observed com-
pared to healthy controls using resting-state functional 
MRI. These preliminary findings warrant further inves-
tigation into patient sensorimotor functions after an ON 
attack (126).

OCT IN MOGAD

The quantitative and qualitative assessment of the retinal 
changes over time can be performed in close-to-cellular 
resolution using spectral domain optical coherence to-
mography (OCT) (23,72,127). Improvement of OCT tech-
niques in the past decade has allowed the retina to be 
examined in greater detail. The unprecedented resolution 
of down to 3.9 µm enables measurement of retinal gan-
glion cell loss, evaluated by the volumes of the combined 
macular ganglion cell layer and inner plexiform layers 
(mGCIPL) and their axons, as measured by the thickness 
of the peripapillary retinal nerve fibre layer (pRNFL). 
These OCT metrics have been shown to correlate well 
with visual function and the damage that occurs in 
NMOSD and MS patients (128,129). Thus, OCT is a valua-
ble tool for monitoring many neuro-ophthalmological and 
neurological conditions, including NMOSD and MOGAD 
(Figure 4) (72,130,131).

Acute ON in MOGAD is often bilateral and localized in 
the anterior optic nerve inducing severe and characteris-
tic retinal oedema (132). Initially covered by the oedema, 
the neuroaxonal layers of the retina (pRNFL, mGCIPL) 
degenerate significantly during the following months 
(Figure 5) (23,73,127,132,133). These losses accumulate 
with each additional ON episode, which occur frequently 
in MOGAD (73,74). Therefore, although a single episode 
does not often lead to disastrous damage (91,134), the 
highly recurrent ON attacks accumulate with pRNFL 
and mGCIPL loss. This is comparable to patients with 
AQP4-IgG-seropositive NMOSD, which is characterized 
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by less frequent, but more damaging, ON episodes (74). In 
comparison with MS, MOGAD patients are described as 
undergoing more severe retinal neurodegeneration after 
ON; however, a final consensus on this topic has not been 
reached (91,127,135).

Further studies are warranted to investigate retinal 
neurodegeneration independent of ON in MOGAD. One 

study performed a first exploratory analysis in a small data 
set recording pRNFL loss without associated GCIPL reduc-
tion (136). Apart from true retinal neurodegeneration, this 
could potentially be explained by a remission of attack-
associated oedema, which commonly affects the RNFL 
more than the ganglion cell layer (137). If the absence 
of ON-independent GCIPL loss is confirmed, this would 

F I G U R E  4   Retinal anatomy and optical coherence tomography. (a) Anatomical representation of the human retina and (b) the human 
retina as imaged using optical coherence tomography (OCT). These images have been kindly reproduced and modified under a Creative 
Common Licence from www.neuro​dial.de. RNFL = retinal nerve fibre layer; GCL = ganglion cell layer; IPL = inner plexiform layer; 
GCIP = ganglion cell and inner plexiform layer

F I G U R E  5   Macular scans from optical coherence tomography (OCT). Macular scans of various retinas with corresponding thickness 
scale (0–150 µm) with heat-maps highlighting the thickness variations across the macular ganglion cell and inner plexiform (GCIP) layer. (a) 
Variations in the thickness across various pathologies in different patients. (b) Right eye of the same myelin oligodendrocyte glycoprotein-
associated disorders (MOGAD) patient prior to optic neuritis (ON) after two and four ONs. Thinner areas are depicted with cooler colours 
(purple/blue) and thicker areas depicted with warmer colours (red/yellow). HC = healthy control; MOGAD-NON: MOGAD with no history 
of ON; AQP-4-IgG: aquaporin-4 immunoglobulin G

http://www.neurodial.de
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not only stress the importance of ON attack-prevention in 
MOGAD but also allow a better separation from MS and 
AQP4-IgG-seropositive NMOSD, which are both affected 
by ON-independent retinal neuroaxonal loss.

OCT data in paediatric MOGAD are scarce. The results 
in paediatric cohorts generally mirror those in adults with 
measurable post-ON swelling and associated reduction 
and thinning of the pRNFL (73,138). There are, however, 
conflicting reports concerning unilateral ON cases with 
subclinical involvement of the contralateral, clinically 
healthy eye, an area which would benefit from further re-
search given the potential detrimental impact on the oth-
erwise healthy eye (138,139).

In both paediatric and adult presentations, and notwith-
standing the high relapse rates and severe neuroaxonal 
degeneration, high-contrast visual acuity is surprisingly 
preserved in MOGAD patients compared with AQP4-IgG-
seropositive NMOSD patients, although both groups have 
comparable neuroaxonal loss (74,91,140–142). How visual 
acuity is preserved in MOGAD remains unclear, but data 
suggest an influence of a primary retinal astrocytopathy 
in AQP4-IgG-seropositive NMOSD accumulating in ad-
ditional retinal changes with functional consequences 
(143). Nevertheless, MOGAD patients, with their high 
prevalence of ON attacks, are at risk of irreversible visual 
impairment when deprived of a timely diagnosis and pre-
ventative immunotherapy.

CONCLUDING REMARKS

MOGAD pathophysiology, disease treatment and moni-
toring are currently of high interest in the autoimmune 
neuroinflammatory diseases research community. 
Currently, most known MRI and OCT characteristics in 
MOGAD are based on small monocentric studies that 
yielded some contradicting results, thus multi-centred 
and prospective studies are necessary to validate findings. 
Such multi-centred studies are beginning to shed light 
upon this rare disease, such as the Collaborative OCT in 
NMOSD (CROCTINO) and the PArallel MRI in NMOSD 
(PAMRINO) studies (144). Especially in a rare and hetero-
geneous disease, such as MOGAD, it is pertinent to gather 
information on patients from varying demographic back-
grounds, over larger age ranges and with standardized im-
aging protocols to allow for robust investigations using a 
variety of analysis techniques.

In-vivo imaging using MRI and OCT has given clinicians 
and researchers insights into the CNS affection of this rare 
disorder at an unprecedented rate. These imaging techniques 
will allow us to further investigate changes in the brain, spi-
nal cord and retina of patients with a dissemination in time 
and space, providing the opportunity to find biomarkers of 

disease-related damage and potentially predictive markers 
for future attacks, thus allowing for stratification of patients 
and real-time communication of the risk of further attacks 
with patients based on bioimaging markers for treatment de-
cisions. As new technologies and analysis methods continue 
to be developed, together with the increase in open-sharing 
and collaborative, prospective studies on the horizon, we 
believe that both MRI and OCT will lead the way towards 
personalized prognostics and treatment in MOGAD.
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