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INTRODUCTION

Myelin	 oligodendrocyte	 glycoprotein	 (MOG)	 immunl-
globulin	 (Ig)G	 antibody-	associated	 disorders	 (MOGAD)	

describe	a	new	entity	of	demyelinating	neurological	syn-
dromes	 defined	 by	 the	 presence	 of	 serum	 IgG	 autoanti-
bodies	against	MOG	detected	by	cell-	based	assays	 (1–	3).	
MOGAD	occur	in	both	children	and	adults	and	comprise	
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Abstract
Myelin	 oligodendrocyte	 glycoprotein	 antibody-	associated	 disorders	 (MOGAD)	 are	
rare	 in	both	children	and	adults,	and	have	been	recently	suggested	to	be	an	auto-
immune	neuroinflammatory	group	of	disorders	that	are	different	from	aquaporin-
	4	autoantibody-	associated	neuromyelitis	optica	spectrum	disorder	and	from	classic	
multiple	 sclerosis.	 In- vivo	 imaging	of	 the	MOGAD	patient	central	nervous	system	
has	shown	some	distinguishing	features	when	evaluating	magnetic	resonance	im-
aging	 of	 the	 brain,	 spinal	 cord	 and	 optic	 nerves,	 as	 well	 as	 retinal	 imaging	 using	
optical	coherence	tomography.	In	this	review,	we	discuss	key	clinical	and	neuroim-
aging	characteristics	of	paediatric	and	adult	MOGAD.	We	describe	how	these	imag-
ing	techniques	may	be	used	to	study	this	group	of	disorders	and	discuss	how	image	
analysis	methods	have	led	to	recent	insights	for	consideration	in	future	studies.
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a	heterogeneous	disease	spectrum	(4,5).	Clinical	presen-
tation	 can	 include	 monophasic	 or	 recurrent	 episodes	 of	
optic	neuritis	(ON),	myelitis,	brain	stem	syndromes,	acute	
disseminated	 encephalomyelitis	 (ADEM)	 and	 symptoms	
of	 encephalitis	 such	 as	 seizures	 (6,7).	 MOGAD	 are	 rare,	
with	 an	 incidence	 of	 1.1–	2.4	 per	 million	 people	 (8)	 and	
are	 more	 frequent	 in	 children	 compared	 with	 adults,	 as	
reported	in	a	recent	Dutch	cohort	with	an	incidence	of	3.1	
per	million	in	children	(9).

A	 direct	 pathophysiological	 effect	 of	 the	 MOG-	IgG	
in	the	central	nervous	system	(CNS)	has	yet	 to	be	elu-
cidated	(2).	It	remains	unclear	whether	MOG-	IgG	has	a	
direct	pathogenic	role	or	whether	 it	 is	a	biomarker	re-
flecting	an	immunological	response	from	disrupted	my-
elin	 in	 the	MOG-	IgG-	associated	demyelinating	disease	
spectrum.	Increasing	clinical	and	pathological	evidence	
now	strongly	indicates	that	MOGAD	represent	a	distinct	
disease	entity	different	 from	other	neuroinflammatory	
and	demyelinating	diseases,	 such	as	multiple	 sclerosis	
(MS)	 or	 aquaporin-	4	 (AQP4)	 IgG-	positive	 neuromyeli-
tis	 optica	 spectrum	 disorder	 (NMOSD)	 (10–	15).	 These	
conditions	 apparently	 exhibit	 differential	 responses	 to	
immunotherapies,	 underscoring	 the	 necessity	 for	 ac-
curate	and	 timely	diagnostic	procedures	during	which	
neuroimaging	 plays	 a	 paramount	 role	 (16–	21).	 Due	 to	
the	 widespread	 nervous	 system	 affection	 in	 MOGAD,	
magnetic	 resonance	 imaging	 (MRI)	 and	 optical	 coher-
ence	tomography	(OCT)	are	important	imaging	tools	in	
gaining	more	knowledge	concerning	the	disease	and	for	
the	 monitoring	 of	 patients	 with	 this	 rare	 set	 of	 disor-
ders	(22,23).	This	review	article	will	give	an	overview	of	
the	clinical,	radiological	and	advanced	imaging	aspects	
which	 are	 currently	 of	 high	 interest	 for	 the	 MOGAD	
clinical	research	community.

MOGAD CLINICAL 
PRESENTATIONS

The	 clinical	 phenotype	 of	 MOGAD	 is	 broad,	 and	 in-
cludes	 uni-		 and	 bilateral	 anterior	 ON,	 long	 and	 short	
transverse	myelitis	(TM),	ADEM,	brain	stem	encephali-
tis	and	cortical	encephalitis	with	or	without	seizures	(2).	
In	addition,	combinations	of	these	syndromes	can	occur,	
e.g.	as	NMOSD-	like	phenotype	presenting	with	ON	and	
TM	 (12).	 Importantly,	 the	 clinical	 phenotype	 strongly	
depends	upon	age,	with	a	more	ADEM-	like	phenotype	
in	children	and	a	more	optico-	spinal	phenotype	in	ado-
lescents	and	adults	(2).	In	paediatric	patients,	the	follow-
ing	four	phenotypes	account	for	90%	of	MOGAD	cases:	
46%	 presenting	 with	 ADEM,	 30%	 with	 ON,	 11%	 with	
TM	and	4%	with	a	NMOSD-	like	phenotype	(ON + TM)	

(24).	Relapses	in	both	children	and	adults	have	been	de-
scribed	 in	40–	80%	of	patients,	especially	 in	 the	 form	of	
ON	(6,25–	27).

Acute disseminated encephalomyelitis

MOG-	IgG	 serum	 antibodies	 were	 first	 identified	 in	 a	
subset	 of	 children	 with	 ADEM	 (28,29).	 Children	 with	
ADEM	 represent	 the	 most	 common	 phenotype	 among	
all	 MOGAD	 patients,	 and	 account	 for	 almost	 50%	 of	
paediatric	 MOGAD	 patients	 (2,24).	 Clinical	 presenta-
tion	 of	 ADEM	 includes	 polyfocal	 neurological	 deficits	
and	encephalopathy	(i.e.	behavioural	changes	or	altered	
consciousness)	not	explainable	by	 fever	 (30).	 It	has	re-
cently	 been	 shown	 that	 up	 to	 50%	 of	 all	 children	 with	
ADEM	are	seropositive	for	MOG-	IgG	(31).	In	these	pa-
tients,	 MOG-	IgG	 seroprevalence	 is	 associated	 with	 a	
higher	 risk	 for	 longitudinally	 extensive	 transverse	 my-
elitis	(LETM),	but	with	resolution	of	brain	lesions	and	a	
better	outcome	compared	to	MOG-	IgG-	negative	ADEM	
patients	(32).	Relapses	can	occur	with	further	episode(s)	
of	 ADEM	 as	 multi-	phasic	 ADEM	 (MDEM),	 with	 ON	
(ADEM-	ON)	 or	 with	 transverse	 myelitis	 (ADEM-	TM)	
(33).	 However,	 up	 to	 75%	 of	 MOG-	IgG-	seropositive	
ADEM	 patients	 become	 seronegative	 within	 months,	
which	 highly	 correlates	 with	 a	 monophasic	 disease	
course	 (34).	 In	 contrast,	 persistent	 seroprevalence	 of	
MOG-	IgG	is	strongly	associated	with	an	 increased	risk	
for	relapsing	disease	(35,36).

Optic neuritis (ON)

ON	is	the	most	common	clinical	presentation	of	MOGAD	
in	 adults,	 comprising	 more	 than	 50%	 of	 MOGAD	 phe-
notypes	at	onset,	as	shown	by	three	large	national	stud-
ies	 from	 the	 United	 Kingdom,	 France	 and	 Sri	 Lanka	
(6,25,37).	 Clinical	 symptoms	 of	 ON	 include	 blurred	 vi-
sion	and	reduced	visual	acuity	or	visual	loss	as	well	as	eye	
pain,	especially	retrobulbar	pain	with	eye	movement	(38).	
ON	in	MOGAD	is	often	bilateral,	either	concurrently	or	
sequentially	 (39,40).	Up	 to	25%	of	patients	present	with	
bilateral	 ON	 at	 disease	 onset	 (41).	 Bilateral	 ON	 repre-
sents	an	important	clinical	presentation	that	can	help	to	
differentiate	MOGAD-	ON	from	ON	in	multiple	sclerosis	
(MS-	ON).	 Meanwhile,	 the	 incidence	 of	 bilateral	 ON	 is	
less	differential	when	evaluating	its	presence	in	MOGAD	
versus	 AQP4-	IgG-	positive	 NMOSD	 (42).	 Differences	 in-
clude	 a	 more	 anterior	 affection	 of	 the	 optic	 nerve	 in	
MOGAD	with	optic	nerve	head	swelling	and	retrobulbar	
involvement.
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Myelitis

Myelitis	 is	 the	 second	 most	 common	 clinical	 presenta-
tion	 in	adult	MOGAD	patients	as	 it	accounts	 for	20%	of	
disease-	related	 attacks,	 but	 is	 less	 common	 in	 children	
(9,25,37).	LETM,	defined	as	a	spinal	cord	lesion	spanning	
three	or	more	vertebral	segments	in	length,	is	a	character-
istic	 finding	in	MOGAD	(43).	Typical	symptoms	include	
motor	and/or	sensory	deficits	(numbness),	bladder,	bowel	
and/or	 erectile	 dysfunction	 (43).	 Neuropathic	 pain	 has	
been	implicated	in	NMOSD	to	be	related	to	the	level(s)	at	
which	spinal	cord	lesion(s)	are	located,	which	could	also	
be	 the	case	 in	MOGAD	patients,	as	86%	of	MOGAD	pa-
tients	in	one	study	reportedly	suffered	from	chronic	pain	
(44–	47).	 Clinical	 differences	 distinguishing	 myelitis	 in	
MOGAD	 versus	 MS	 or	 AQP4-	NMOSD	 include:	 a	 higher	
skew	 towards	 males,	 higher	 frequency	 of	 bladder	 and	
erectile	 dysfunction,	 younger	 age,	 prodromal	 infection	
and	concurrent	ADEM.	Short	myelitis	 (lesions	spanning	
fewer	than	three	vertebral	segments)	can	also	occur,	and	
is	found	in	up	to	38%	of	MOGAD	cases	(48,49).	Sphincter	
involvement	 has	 also	 been	 found	 to	 be	 more	 prevalent	
in	MOGAD	patients	with	LETM	compared	to	those	with	
short	myelitis	(80	versus	50%	(49).

Neuromyelitis optica spectrum disorder 
(NMOSD)

A	 combination	 of	 ON	 and/or	 myelitis	 is	 the	 classical	
clinical	 phenotype	 of	 NMOSD.	 Neuromyelitis	 optica	
(NMO)	 was	 traditionally	 characterized	 by	 recurrent	
uni-		 or	 bilateral	 ON	 and	 TM	 and	 was	 later	 expanded	
to	 a	 broader	 spectrum	 with	 restricted	 or	 extended	
forms,	 including	 brain	 stem	 syndromes,	 referred	 to	
NMOSD	(12,50,51).	Approximately	one-	third	of	AQP4-	
IgG-	negative	NMOSD	patients	harbour	 IgG	serum	au-
toantibodies	 against	 MOG	 (12,52).	 As	 the	 presenting	
phenotype	in	MOGAD,	NMOSD	occurs	in	5–	20%	of	pa-
tients	 (6,25,53).	 Therefore,	 in	 patients	 with	 an	 optico-	
spinal	 phenotype,	 MOGAD	 represents	 an	 important	
differential	 diagnosis	 to	 AQP4-	NMOSD,	 especially	
as	 the	 combination	 of	 myelitis	 with	 ON	 seems	 to	 be	
more	common	in	MOGAD	compared	to	AQP4-	NMOSD	
(12,53,54):	up	to	10%	of	MOGAD	patients	present	with	
simultaneous	ON	and	TM	compared	to	only	4%	in	AQP4-	
NMOSD	(12).	It	should	be	noted	that	a	recent	large	study	
by	Tajfirouz	et al.	 found	 that	 involvement	of	 the	optic	
chiasm	was	more	frequent	in	both	AQP4-	NMOSD	(20%)	
and	MOGAD	(16%)	than	have	been	thought	previously,	
although	MOGAD	chiasmal	involvement	is	more	prob-
ably	 associated	 with	 a	 longitudinally	 extensive	 optic	
nerve	 lesion	 (55).	 Similar	 to	 AQP4-	NMOSD,	 MOGAD	

can	also	present	with	brain	stem	symptoms,	 including	
intractable	nausea,	vomiting	and	hiccups,	described	as	
area	postrema	syndrome	(56).	However,	this	syndrome	
is	rare	(2–	5%)	in	MOGAD	(12,57).

Encephalitis

Epileptic	seizures	were	repeatedly	described	in	a	subgroup	
of	MOGAD	patients	and	are	more	common	than	in	AQP4-	
IgG-	seropositive	NMOSD	(58–	60),	occurring	in	20%	of	all	
adult	and	paediatric	MOGAD	patients	(61).

Encephalitis	 with	 and	 without	 seizures	 is	 now	 be-
coming	 increasingly	 recognized	 as	 an	 important	 clinical	
phenotype	of	MOGAD	(61).	Patients	present	with	neuro-
psychiatric	symptoms,	behavioural	changes,	seizures	and	
memory	 or	 speech	 problems	 (62).	 Recently,	 encephalitis	
with	MOG-	IgG	has	been	described	as	the	most	common	
type	of	autoimmune	encephalitis	in	children,	accounting	
for	34%	of	all	children	presenting	with	encephalitis	other	
than	ADEM	(63).

Other rare types of clinical presentation

Another	rare	presentation	of	MOGAD	is	found	in	children	
who	show	similar	symptoms	of	ADEM	with	a	progressive	
disease	course	(64).	The	clinical	course	and	symmetrical	
confluent	 cerebral	 MRI	 changes	 resemble	 that	 of	 chil-
dren	with	leukodystrophy,	leading	to	its	description	as	a	
‘leukodystrophy-	like	 phenotype’.	 Recently,	 overlapping	
central	 and	 peripheral	 nervous	 system	 syndromes	 have	
been	 described	 as	 potential	 additional	 MOGAD	 pheno-
types,	including	cranial	nerve	involvement,	myeloradicu-
litis,	 inflammatory	 neuropathies	 and	 combined	 central	
and	peripheral	demyelination	syndromes	(65–	69).

MRI IN MOGAD

MRI	 abnormalities	 in	 MOGAD	 can	 be	 detected	 in	 the	
brain,	 the	 optic	 nerve	 and/or	 the	 spinal	 cord,	 depend-
ing	upon	the	clinically	affected	anatomical	region	of	the	
nervous	system	(70).	MOGAD	patients	are	often	scanned	
after	a	first	presentation	of	ON,	LETM	and/or	other	clini-
cal	 symptoms;	 thus,	 most	 imaging	 findings	 are	 cross-	
sectional	and	follow-	up	imaging	data	is	scant.	On	cerebral	
MRI,	 findings	 in	children	mainly	reflect	signs	of	ADEM	
with	diffuse,	widespread	white	matter	T2	lesions,	while	in	
adults	cerebral	MRI	is	either	normal	or	shows	brain	stem	
or	cortical	lesions	(2).	Acute	ON	can	lead	to	swelling	of	the	
optic	nerve	and	to	severe	retinal	neurodegeneration	over	
time	(71–	74).	Typical	MRI	findings	of	ON	in	MOGAD	are	
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long	 lesions	 in	 the	 anterior	 part	 of	 the	 optic	 nerve	 with	
periorbital	 enhancement	 and	 often	 bilateral	 affection	
(42).	 Spinal	 cord	 lesions	 in	 MOGAD	 can	 be	 visualized	
using	MRI	typically	showing	LETM	affecting	mainly	the	
grey	matter,	as	seen	as	an	‘H-	sign’	on	the	axial	plane	(43).	
Important	differential	disease	diagnoses	via	MRI	findings	
in	 MOGAD	 include	 its	 distinction	 from	 MS	 and	 AQP4-	
IgG	seropositive	NMOSD	(75,76).	The	following	sections	
describe	 common	 radiological	 presentations	 found	 in	
both	 adult	 and	 paediatric	 MOGAD	 (Table	 1),	 as	 well	 as	
advanced	 MRI	 techniques	 with	 the	 potential	 to	 further	
evaluate	CNS	changes	in	these	disorders.	Table	1	indicates	
the	 likelihood	 of	 observing	 these	 radiological	 features,	
where	positive	(greater)	and	negative	(lesser)	symbols	de-
note	comparative	prevalence	between	the	adults	and	pae-
diatric	patients.	Brackets	around	the	positive	and	negative	
symbols	denote	rare	observations.

Radiological presentation on clinically 
routine MRI

Cerebral	MRI

Cerebral	 MRI	 changes	 in	 MOGAD	 are	 highly	 depend-
ent	upon	age.	In	children,	typical	MRI	findings	of	ADEM	
are	found	in	40–	50%	of	MOGAD	cases	(7).	These	include	

widespread	 supra-		 and	 infratentorial,	 asymmetrical	 dif-
fuse	white	matter	T2	hyperintensive	lesions	(32,77).	In	a	
small	 cohort,	 additional	 bilateral	 thalamic	 lesions	 were	
found	in	more	than	80%	of	paediatric	MOG-	IgG-	positive	
compared	 to	 only	 10%	 of	 MOG-	IgG-	negative	 ADEM	 pa-
tients	(78).	In	adults,	brain	MRI	lesions	are	typically	few	
and	either	found	infratentorially	or	presenting	as	cortical	
lesions	(79,80);	however,	there	have	been	observations	of	
large,	confluent	T2	hyperintense	lesions	in	the	white	mat-
ter	similar	to	ADEM	(11).

Brain	stem	lesions	can	be	found	in	up	to	30%	of	adult	
MOGAD	patients	(6,81).	These	lesions	are	typically	poorly	
demarcated,	located	in	the	pons	around	the	fourth	ventri-
cle	 or	 the	 cerebellar	 peduncles,	 and	 resolving	 over	 time	
(79).	Isolated	brain	or	brain	stem	lesions	in	adults	are	rare	
(approximately	5%).	However,	brain	lesions	are	found	in	
45%	 of	 initial	 cerebral	 MRI	 scans	 in	 adult	 MOGAD	 pa-
tients,	 mainly	 in	 combination	 with	 optico-	spinal	 lesions	
(6).	 One	 patient	 presented	 with	 an	 initial	 MRI	 pattern	
typical	 of	 chronic	 lymphocytic	 inflammation	 with	 pon-
tine	 perivascular	 enhancement	 responsive	 to	 steroids	
(CLIPPERS)	 and	 then	 subsequently	 developed	 LETM	
leading	to	a	diagnosis	of	MOGAD	(82).

Isolated	 T2	 hyperintense	 cortical	 lesions	 visible	 on	
fluid-	attenuated	inversion	recovery	(FLAIR)	sequences	in	
both	adult	and	paediatric	patients	with	seizures	were	iden-
tified	and	referred	to	as	FLAMES:	FLAIR-	hyperintense	le-
sions	 in	 anti-	MOG-	associated	 encephalitis	 with	 seizures	
(80,83).	 In	 these	patients,	 cerebral	MRI	reveal	unilateral	
or	bilateral	cortical	T2	hyperintense	lesions,	but	can	also	
include	 deep	 grey	 matter,	 white	 matter	 and	 brain	 stem	
lesions	(58,60,84).	In	paediatric	MOG-	associated	autoim-
mune	encephalitis,	cerebral	MRI	findings	include	exten-
sive	 cortical	 and/or	 subcortical	 grey	 matter	 involvement	
without	 the	 typical	 white	 matter	 lesions	 seen	 in	 ADEM	
(4,63).	 Importantly,	 cerebral	 MRI	 in	 these	 children	 was	
normal	in	only	9%	of	the	cohort,	which	is	comparatively	
lower	than	other	types	of	autoimmune	encephalitis	such	
as	anti-	N-	methyl-	D-	aspartic	acid	or	N-	methyl-	D-	aspartate	
(NMDA)-	receptor	encephalitis,	where	MRI	can	be	normal	
in	50%	of	the	patients	(85).	In	young	children	presenting	
with	the	rare	leukodystrophy-	like	MOGAD	phenotype,	ce-
rebral	MRI	shows	extensive	confluent	symmetrical	white	
matter	lesions	with	progression	over	time	(64).

As	MOGAD	represents	an	important	differential	diag-
nosis	 from	 MS	 and	 AQP4-	NMOSD,	 several	 studies	 have	
assessed	potential	differences	using	 radiological	 features	
on	MRI.	A	distinct	pattern	of	MRI	lesions	defined	by	the	
so-	called	Matthews–	Jurynczyk	criterion	can	help	to	differ-
entiate	MOG-	NMOSD	versus	MS.	This	criterion	strongly	
favours	MS	over	MOGAD,	when:	(i)	≥ 1 lesion(s)	adjacent	
to	a	lateral	ventricle	and	in	the	inferior	temporal	lobe,	(ii)	
subcortical	U-	fibre	 lesions	and	(iii)	Dawson’s	 finger-	type	

T A B L E  1 	 Comparisons	of	MRI	findings	in	adult	versus	
paediatric	MOGAD	patients

MRI finding
Adult 
MOGAD

Paediatric 
MOGAD

Brain

Typical	ADEM-	like	lesionsa	 (−) +b	

Brain	stem	lesions +c	 (+)

Cortical	lesions + (+)

Optic	nerve

Extensive	optic	neuritisd	 + +

Optic	perineuritise	 (+) (−)

Spinal	cord

LETMf	 + +

Short	myelitis + +
aAcute	disseminated	encephalomyelitis	(ADEM):	widespread	supra-		and	
infratentorial,	asymmetrical	diffuse	white	matter	T2-	hyperintensive	lesions.
bIn	40–	50%	of	paediatric	adult	myelin	oligodendrocyte	glycoprotein	
associated	disorders	(MOGAD)	cases.
cIn	up	to	30%	of	MOGAD	patients.
dExtensive	(uni-	/bilateral)	anterior	T2	hyperintense	optic	nerve	lesions,	
nerve	swelling	and	gadolinium	enhancement.
ePerineural	or	periorbital	gadolinium	enhancement	in	the	orbital	soft	tissue.
fLongitudinally	extensive	transverse	myelitis	(LETM):	spinal	cord	lesion	
spanning	three	or	more	vertebral	segments	in	length.
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lesions	 are	 present	 (79,86,87).	 However,	 these	 studies	
did	 not	 report	 criteria	 to	 help	 to	 discriminate	 between	
MOGAD	and	AQP4-	NMOSD	patients	(88).	Both	MOGAD	
and	 AQP4-	NMOSD	 patients	 can	 present	 with	 lesions	 in	
the	 brain	 stem	 (79,87),	 while	 cortical	 and	 juxtacortical	
lesions	 are	 more	 frequently	 found	 in	 MOGAD	 versus	
AQP4-	NMOSD	 patients	 (57	 versus	 0%).	 Meanwhile,	 the	
area	postrema	syndrome	that	often	affects	AQP4-	NMOSD	
patients	 with	 its	 corresponding	 MRI	 lesions	 (50%)	 does	
not	 seem	 to	 be	 a	 characteristic	 feature	 in	 MOGAD	 (7%)	
(Figure	1)	(57).

MRI	 findings	 in	 ON	 can	 include	 T2	 hyperintense	 le-
sions,	nerve	swelling	and	gadolinium	enhancement	of	the	

affected	optic	nerve	on	T1-	weighted	imaging.	In	MOG-	ON,	
optic	nerve	lesions	are	usually	extensive,	also	termed	longi-
tudinally	extensive	ON	(LEON),	affecting	more	than	half	of	
the	pre-	chiasmatic	optic	nerve	length	(42,89,90).	MOG-	ON	
also	 predominantly	 affects	 the	 anterior	 part	 of	 the	 optic	
nerve.	 This	 can	 help	 with	 differentiating	 MOG-	ON	 from	
AQP4-	ON,	which	is	also	often	extensive,	but	predominantly	
affecting	the	posterior	part	of	the	optic	pathway	(including	
the	optic	chiasm)	(42,91–	93).	Although	MS-	ON	typically	in-
volves	shorter	segments	of	the	optic	nerve	compared	to	both	
MOG-	ON	and	AQP4-	ON,	bilateral	ON,	with	bilateral	radio-
logical	optic	nerve	involvement,	is	found	in	more	than	80%	
of	MOG-	ON	and	AQP4-	ON	patients	compared	to	only	20%	

F I G U R E  1  Cerebral	magnetic	resonance	imaging	(MRI)	in	paediatric	myelin	oligodendrocyte	glycoprotein-	associated	disorders	
(MOGAD).	(a,b)	Axial	T2-	weighted	fluid-	attenuated	inversion	recovery	(FLAIR)	MRI	sequences	of	a	3-	year-	old	female	MOG-	
immunoglobulin	(Ig)G-	positive	acute	disseminated	encephalomyelitis	(ADEM)	patient	showing	bilateral	white	matter	and	deep	grey	matter	
thalamic	lesions.	(c)	Axial	T2-	weighted	MRI	sequence	of	a	12-	year-	old	female	patient	with	MOG-	immunoglobulin	(Ig)G-	positive	ADEM	and	
bilateral	optic	neuritis	(ON)	showing	optic	nerve	swelling	and	hyperintensity
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in	MS-	ON	(41).	Additionally,	in	paediatric	patients,	bilateral	
ON	has	been	associated	with	higher	MOG-	IgG	titres	(39,42).	
Another	 characteristic	 feature	 described	 in	 MOG-	ON	 is	
perineuritis	 with	 perineural	 or	 periorbital	 gadolinium	 en-
hancement	 in	 the	 orbital	 soft	 tissue	 that	 is	 not	 typically	
found	in	MS-	ON	(Figure	2)	(53,89,90,94–	96).

Spinal	cord	MRI

Typical	 spinal	 cord	MRI	changes	 in	both	children	and	
adult	 MOGAD	 patients	 are	 TM,	 often	 in	 the	 form	 of	
LETM,	but	also	as	short	myelitis	(12,48).	LETM	is	found	
in	more	than	70%	of	MOGAD	patients	with	spinal	cord	
involvement,	 mainly	 affecting	 the	 cervical	 and/or	 tho-
racic	cord	(43,49,53,77).	LETM	is	also	a	main	radiological	
feature	in	AQP4-	NMOSD	(48).	Conus	involvement	and	
multiple	spinal	cord	lesions	have	been	more	frequently	

observed	in	MOG-	TM	(40%)	than	in	AQP4-	TM	(15%)	to-
gether	 with	 multiple	 lesions	 observed	 60%	 of	 the	 time	
in	 MOGAD	 (43,97,98).	 Short	 myelitis,	 which	 is	 typical	
of	MS,	 can	 similarly	be	 found	 in	MOG-	TM	(up	 to	50%	
of	cases);	however,	it	is	less	frequently	observed	(~15%)	
in	 AQP4-	TM	 patients	 (27,43,49,99,100).	 MOG-	TM	
may	 present	 in	 spinal	 cord	 MRI	 as	 a	 hyperintense	 ‘H-	
sign’	 observed	 in	 the	 axial	 orientation,	 while	 imaged	
as	 a	 longitudinal	 thin	 vertical	 line	 in	 the	 T2-	weighted	
sagittal	 plane	 image.	 This	 suggests	 a	 predominant	 af-
fection	 of	 the	 spinal	 cord	 grey	 matter,	 as	 opposed	 to	
AQP4-	TM,	which	may	not	be	as	centrally	located	in	the	
cord	(43,101,102).	Gadolinium	contrast-	enhancement	of	
spinal	cord	lesions	is	detected	in	only	25%	of	MOG-	TM	
cases	 compared	 to	 lesions	 in	 MS	 (75%)	 or	 AQP4-	TM	
(80%)	(43).	Of	note,	spinal	cord	MRI	can	initially	be	nor-
mal	in	up	to	10%	of	MOGAD	patients	with	myelitis	at-
tacks	(Figure	3)	(103).

F I G U R E  2  Spinal	cord	magnetic	resonance	imaging	(MRI)	in	paediatric	myelin	oligodendrocyte	glycoprotein	associated	disorders	
(MOGAD).	Sagittal	(a)	and	transversal	(b)	T2-	weighted	spinal	cord	MRI	of	a	12-	year-	old	female	patient	with	MOG-	immunoglobulin	(Ig)
G-	positive	acute	disseminated	encephalomyelitis	(ADEM).	(b)	Longitudinally	extensive	transverse	myelitis	(LETM)	with	grey	matter	spinal	
cord	affection	presenting	with	the	‘H-	sign’	and	(a)	as	longitudinal	hyperintense	line.	(c)	Sagittal	T2-	weighted	cervical	cord	MRI	in	a	3-	year-	
old	female	patient	with	MOG-	IgG-	seropositive	ADEM	(the	same	patient	shown	in	Figure	1a,b)
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Structural and functional MRI 
analysis techniques

Structural	 and	 functional	 MRI	 analysis	 techniques	 in-
clude	brain	and	spinal	cord	volumetric	analyses,	diffusion	
tensor	 imaging	 (DTI)	 and	 resting-	state	 functional	 MRI.	
These	 techniques	 are	 usually	 not	 applied	 as	 part	 of	 the	
clinical	routine	work-	up	in	MOGAD	patients,	and	quan-
titative	volumetric	and/or	microstructural	grey	and	white	
matter	analyses	using	advanced	MRI	techniques	are	few.	
Recent	studies,	however,	have	identified	specific	changes	
in	MOGAD	patients	that	are	potential	new	imaging	bio-
markers	and	tools	for	a	clearer	understanding	of	MOGAD	
disease	pathology	(23,104–	106).

Although	 brain	 lesion	 distributions	 have	 been	 found	
to	 differ	 between	 MOGAD	 and	 AQP4-	NMOSD	 patients,	
brain	 MRI	 volumetry	 did	 not	 show	 any	 differences	
in	 MOGAD	 patients	 compared	 to	 healthy	 controls	 in	
whole	 brain,	 deep	 grey	 matter	 or	 white	 matter	 volumes	
(104,107).	 However,	 there	 are	 conflicting	 results	 as	 to	
whether	localized	reductions	in	the	volume	of	several	grey	
matter	structures	exist	(104,108).	In	children	with	ADEM,	
reduced	 brain	 volume	 and	 failure	 of	 age-	expected	 brain	

growth	 was	 found	 for	 both	 MOG-	IgG-	seropositive	 and	
-	seronegative	 patients	 (Bartels	 et al.,	 submitted),	 similar	
to	findings	in	paediatric	anti-	NMDA-	receptor	encephalitis	
and	paediatric-	onset	MS	(7,85,109).

Spinal	 cord	 MRI	 analysis	 could	 identify	 spinal	 cord	
atrophy	 in	 patients	 with	 MOGAD	 compared	 to	 healthy	
subjects,	 which	 was	 found	 to	 associate	 with	 increased	
counts	 of	 historical	 myelitis	 attacks.	 However,	 cord	 le-
sion	frequency	and	atrophy	was	found	to	be	less	frequent	
compared	 to	 AQP4-	TM	 (43,105),	 which	 is	 in	 line	 with	
clinical	observations	that	MOGAD	patients	often	recover	
their	 motor	 functions	 more	 completely	 than	 AQP4-	TM	
patients	 (25).	 In	 MOG-	myelitis	 patients,	 another	 study	
showed	that	the	grey	matter	volume	in	the	spinal	cord	was	
reduced	during	the	acute	phase	of	the	attack	(106),	thus	
indicating	that	affection	of	grey	matter	might	be	a	more	
common	 occurrence	 than	 previously	 thought.	 This	 also	
supports	previous	findings	of	 long-	term	damage	to	cere-
bral	grey	matter.

Meanwhile,	evaluating	CNS	changes	using	graph	the-
ory	and	network	statistical	methods	for	elucidating	clinical	
attack-	related	damage	in	NMOSD	patients	has	also	shown	
promise.	 Both	 cortical	 topological	 network	 changes	 and	

F I G U R E  3  Adult	myelin	oligodendrocyte	glycoprotein-	associated	disorders	(MOGAD)	patient	cerebral	and	spinal	cord	affection.	(a)	T2-	
weighted	fluid-	attenuated	inversion	recovery	(FLAIR)	magnetic	resonance	imaging	(MRI)	sequence	in	the	axial	orientation	showing	large,	
confluent	hyperintense	lesions	in	the	white	matter.	(b)	In	the	coronal	view	of	the	same	cerebral	scan	as	in	(a),	it	can	be	seen	that	the	lesions	
extend	toward	the	cortex.	(c)	The	T2-	weighted	spinal	cord	MRI	shows	short	segment	lesions,	appearing	to	be	located	centrally	in	the	cord
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deep	grey	matter	volume	changes	have	been	detected	 in	
AQP4-	NMOSD	patients	following	ON	attacks	and	in	pa-
tients	with	a	simultaneous	combination	of	clinical	attacks	
(108,110).	These	findings	suggest	that	there	may	be	non-	
localized	 damage	 or	 affection	 in	 NMOSD,	 which	 could	
also	be	the	case	in	MOGAD,	and	be	of	interest	in	cognitive	
impairment	studies	in	these	patients.

Using	 DTI,	 one	 study	 found	 decreased	 white	 matter	
integrity	 in	adult	MOGAD	patients	compared	to	healthy	
controls:	 specifically,	 reduced	 parallel	 diffusivity	 within	
whole-	brain	 white	 matter	 tracts	 (104).	 Parallel	 or	 axial	
diffusivity	 characterizes	 diffusion	 along	 the	 long	 axis	 of	
the	axonal	tract;	thus,	a	reduction	in	this	measure	may	be	
associated	with	various	mechanisms	of	axonal	damage	or	
injury,	commonly	thought	to	occur	via	Wallerian	degen-
eration	(111).

As	 demyelination	 represents	 a	 pathological	 hallmark	
in	 MOGAD,	 in- vivo	 imaging	 of	 myelin	 integrity	 could	
represent	 a	 promising	 technique	 to	 further	 identify	 dis-
ease	mechanisms	and	disease	courses	 in	MOGAD	(112).	
Further	studies	 investigating	white	matter	abnormalities	
may	utlize	quantitative	techniques,	such	as	T1-	weighted/
T2-	weighted	 intensity	 ratio,	 multi-	parameter	 mapping	
and	magnetization	transfer	MRI	analysis.	These	advanced	
imaging	analysis	methods	could	help	in	the	identification	
of	more	subtle	MRI	changes	 in	MOGAD	patients	 in	 the	
future	 (113–	115).	 Recently,	 the	 underlying	 pathophys-
iology	 of	 neuroinflammation	 has	 been	 evaluated	 using	
quantitative	 susceptibility	 mapping	 (QSM)	 MRI	 in	 MS.	
QSM	is	a	 technique	that	allows	for	 the	quantification	of	
magnetic	susceptibility	differences	in	a	spatial	manner	to	
measure	different	para-		and	diamagnetic	atoms	(such	as	
iron	 atoms)	 within	 tissue	 (116).	 In	 a	 relatively	 large	 MS	
cohort,	it	was	found	using	QSM	that	depletions	of	myelin	
and	 iron	 concentration	 were	 associated	 with	 thalamic	
atrophy	and	disability	(117),	indicating	that	iron	concen-
tration	 in	 the	 brain	 is	 a	 possible	 biomarker	 in	 neurode-
generation	 related	 to	 myelin	 damage.	 Another	 method	
of	evaluating	molecular	changes	in	the	brain	is	by	using	
hydrogen-	1-	magnetic	 resonance	 spectroscopy	 (1H-	MRS),	
which	measures	hydrogen	proton	concentrations	attached	
to	specific	metabolites	such	as	glutamate,	choline	and	γ-	
aminobutyric	 acid	 (GABA).	 Some	 small	 studies	 have	
found	conflicting	results	in	MS	patients,	however,	due	to	
the	complex	analysis	methods	and	confound	corrections	
required	for	robust	results	(118).	Both	QSM	and	MRS	are	
relatively	well	established	in	many	1.5–	3	Tesla	MRI	facili-
ties,	and	could	be	imaging	analyses	of	interest	for	clinical	
immunologists	and	MOGAD	researchers	in	the	future.

Proton	emission	tomography	(PET)-	MRI	research	has	
allowed	for	more	in- vivo	molecular	imaging,	where	radio-
nuclide	 tracers	can	be	used	 to	calculate	myelin	kinetics,	
concentrations	of	neuroinflammatory	molecules	and	help	

to	 investigate	 pathophysiology	 (119).	 PET	 tracers	 rely	
upon	the	radiolabelling	of	antibodies	or	chemical	chelates	
that	bind	to	specific	targets	of	interest	(120).	However,	to	
detect	 the	 radioactive	 decay	 signals,	 X-	ray	 computed	 to-
mography	 (CT)	 imaging	 is	 traditionally	 applied	 to	 first	
create	an	image	for	quantification	of	the	signal	(121),	and	
currently	 very	 few	 PET-	MRI	 systems	 are	 available	 glob-
ally.	Often,	PET	research	is	conducted	using	both	a	CT	and	
MRI	(122).	Thus,	there	are	still	some	hurdles	in	applying	
this	imaging	method	in	a	clinical	setting,	especially	in	rare	
diseases	such	as	MOGAD.

Resting-	state	 functional	 MRI	 connectivity	 allows	 for	
the	 study	 of	 functional	 connectivity	 alterations,	 such	 as	
in	the	visual	or	sensorimotor	networks	of	the	brain	(123–	
125).	Recently,	it	was	found	that	altered	interhemispheric	
function	in	patients	with	MOG-	ON	can	be	observed	com-
pared	 to	 healthy	 controls	 using	 resting-	state	 functional	
MRI.	 These	 preliminary	 findings	 warrant	 further	 inves-
tigation	 into	patient	sensorimotor	 functions	after	an	ON	
attack	(126).

OCT IN MOGAD

The	quantitative	and	qualitative	assessment	of	the	retinal	
changes	 over	 time	 can	 be	 performed	 in	 close-	to-	cellular	
resolution	 using	 spectral	 domain	 optical	 coherence	 to-
mography	(OCT)	(23,72,127).	Improvement	of	OCT	tech-
niques	 in	 the	 past	 decade	 has	 allowed	 the	 retina	 to	 be	
examined	in	greater	detail.	The	unprecedented	resolution	
of	down	 to	3.9 µm	enables	measurement	of	 retinal	gan-
glion	cell	loss,	evaluated	by	the	volumes	of	the	combined	
macular	 ganglion	 cell	 layer	 and	 inner	 plexiform	 layers	
(mGCIPL)	and	their	axons,	as	measured	by	the	thickness	
of	 the	 peripapillary	 retinal	 nerve	 fibre	 layer	 (pRNFL).	
These	 OCT	 metrics	 have	 been	 shown	 to	 correlate	 well	
with	 visual	 function	 and	 the	 damage	 that	 occurs	 in	
NMOSD	and	MS	patients	(128,129).	Thus,	OCT	is	a	valua-
ble	tool	for	monitoring	many	neuro-	ophthalmological	and	
neurological	conditions,	including	NMOSD	and	MOGAD	
(Figure	4)	(72,130,131).

Acute	ON	in	MOGAD	is	often	bilateral	and	localized	in	
the	anterior	optic	nerve	inducing	severe	and	characteris-
tic	retinal	oedema	(132).	Initially	covered	by	the	oedema,	
the	 neuroaxonal	 layers	 of	 the	 retina	 (pRNFL,	 mGCIPL)	
degenerate	 significantly	 during	 the	 following	 months	
(Figure	 5)	 (23,73,127,132,133).	 These	 losses	 accumulate	
with	each	additional	ON	episode,	which	occur	frequently	
in	MOGAD	(73,74).	Therefore,	although	a	single	episode	
does	 not	 often	 lead	 to	 disastrous	 damage	 (91,134),	 the	
highly	 recurrent	 ON	 attacks	 accumulate	 with	 pRNFL	
and	 mGCIPL	 loss.	 This	 is	 comparable	 to	 patients	 with	
AQP4-	IgG-	seropositive	 NMOSD,	 which	 is	 characterized	
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by	less	frequent,	but	more	damaging,	ON	episodes	(74).	In	
comparison	with	MS,	MOGAD	patients	are	described	as	
undergoing	 more	 severe	 retinal	 neurodegeneration	 after	
ON;	however,	a	final	consensus	on	this	topic	has	not	been	
reached	(91,127,135).

Further	 studies	 are	 warranted	 to	 investigate	 retinal	
neurodegeneration	 independent	of	ON	 in	MOGAD.	One	

study	performed	a	first	exploratory	analysis	in	a	small	data	
set	recording	pRNFL	loss	without	associated	GCIPL	reduc-
tion	(136).	Apart	from	true	retinal	neurodegeneration,	this	
could	 potentially	 be	 explained	 by	 a	 remission	 of	 attack-	
associated	 oedema,	 which	 commonly	 affects	 the	 RNFL	
more	 than	 the	 ganglion	 cell	 layer	 (137).	 If	 the	 absence	
of	ON-	independent	GCIPL	 loss	 is	confirmed,	 this	would	

F I G U R E  4  Retinal	anatomy	and	optical	coherence	tomography.	(a)	Anatomical	representation	of	the	human	retina	and	(b)	the	human	
retina	as	imaged	using	optical	coherence	tomography	(OCT).	These	images	have	been	kindly	reproduced	and	modified	under	a	Creative	
Common	Licence	from	www.neuro	dial.de.	RNFL =	retinal	nerve	fibre	layer;	GCL = ganglion	cell	layer;	IPL = inner	plexiform	layer;	
GCIP = ganglion	cell	and	inner	plexiform	layer

F I G U R E  5  Macular	scans	from	optical	coherence	tomography	(OCT).	Macular	scans	of	various	retinas	with	corresponding	thickness	
scale	(0–	150 µm)	with	heat-	maps	highlighting	the	thickness	variations	across	the	macular	ganglion	cell	and	inner	plexiform	(GCIP)	layer.	(a)	
Variations	in	the	thickness	across	various	pathologies	in	different	patients.	(b)	Right	eye	of	the	same	myelin	oligodendrocyte	glycoprotein-	
associated	disorders	(MOGAD)	patient	prior	to	optic	neuritis	(ON)	after	two	and	four	ONs.	Thinner	areas	are	depicted	with	cooler	colours	
(purple/blue)	and	thicker	areas	depicted	with	warmer	colours	(red/yellow).	HC = healthy	control;	MOGAD-	NON:	MOGAD	with	no	history	
of	ON;	AQP-	4-	IgG:	aquaporin-	4	immunoglobulin	G

http://www.neurodial.de
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not	only	stress	the	importance	of	ON	attack-	prevention	in	
MOGAD	but	also	allow	a	better	separation	from	MS	and	
AQP4-	IgG-	seropositive	NMOSD,	which	are	both	affected	
by	ON-	independent	retinal	neuroaxonal	loss.

OCT	data	in	paediatric	MOGAD	are	scarce.	The	results	
in	paediatric	cohorts	generally	mirror	those	in	adults	with	
measurable	 post-	ON	 swelling	 and	 associated	 reduction	
and	thinning	of	the	pRNFL	(73,138).	There	are,	however,	
conflicting	 reports	 concerning	 unilateral	 ON	 cases	 with	
subclinical	 involvement	 of	 the	 contralateral,	 clinically	
healthy	eye,	an	area	which	would	benefit	from	further	re-
search	given	the	potential	detrimental	impact	on	the	oth-
erwise	healthy	eye	(138,139).

In	both	paediatric	and	adult	presentations,	and	notwith-
standing	 the	 high	 relapse	 rates	 and	 severe	 neuroaxonal	
degeneration,	 high-	contrast	 visual	 acuity	 is	 surprisingly	
preserved	in	MOGAD	patients	compared	with	AQP4-	IgG-	
seropositive	NMOSD	patients,	although	both	groups	have	
comparable	neuroaxonal	loss	(74,91,140–	142).	How	visual	
acuity	is	preserved	in	MOGAD	remains	unclear,	but	data	
suggest	an	 influence	of	a	primary	 retinal	astrocytopathy	
in	 AQP4-	IgG-	seropositive	 NMOSD	 accumulating	 in	 ad-
ditional	 retinal	 changes	 with	 functional	 consequences	
(143).	 Nevertheless,	 MOGAD	 patients,	 with	 their	 high	
prevalence	of	ON	attacks,	are	at	risk	of	irreversible	visual	
impairment	when	deprived	of	a	timely	diagnosis	and	pre-
ventative	immunotherapy.

CONCLUDING REMARKS

MOGAD	 pathophysiology,	 disease	 treatment	 and	 moni-
toring	 are	 currently	 of	 high	 interest	 in	 the	 autoimmune	
neuroinflammatory	 diseases	 research	 community.	
Currently,	most	known	MRI	and	OCT	characteristics	 in	
MOGAD	 are	 based	 on	 small	 monocentric	 studies	 that	
yielded	 some	 contradicting	 results,	 thus	 multi-	centred	
and	prospective	studies	are	necessary	to	validate	findings.	
Such	 multi-	centred	 studies	 are	 beginning	 to	 shed	 light	
upon	this	rare	disease,	such	as	the	Collaborative	OCT	in	
NMOSD	(CROCTINO)	and	the	PArallel	MRI	in	NMOSD	
(PAMRINO)	studies	(144).	Especially	in	a	rare	and	hetero-
geneous	disease,	such	as	MOGAD,	it	is	pertinent	to	gather	
information	on	patients	from	varying	demographic	back-
grounds,	over	larger	age	ranges	and	with	standardized	im-
aging	protocols	to	allow	for	robust	investigations	using	a	
variety	of	analysis	techniques.

In- vivo	imaging	using	MRI	and	OCT	has	given	clinicians	
and	researchers	insights	into	the	CNS	affection	of	this	rare	
disorder	at	an	unprecedented	rate.	These	imaging	techniques	
will	allow	us	to	further	investigate	changes	in	the	brain,	spi-
nal	cord	and	retina	of	patients	with	a	dissemination	in	time	
and	space,	providing	the	opportunity	to	find	biomarkers	of	

disease-	related	damage	and	potentially	predictive	markers	
for	future	attacks,	thus	allowing	for	stratification	of	patients	
and	real-	time	communication	of	the	risk	of	further	attacks	
with	patients	based	on	bioimaging	markers	for	treatment	de-
cisions.	As	new	technologies	and	analysis	methods	continue	
to	be	developed,	together	with	the	increase	in	open-	sharing	
and	 collaborative,	 prospective	 studies	 on	 the	 horizon,	 we	
believe	that	both	MRI	and	OCT	will	lead	the	way	towards	
personalized	prognostics	and	treatment	in	MOGAD.
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