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ABSTRACT 
 

The prediction of inter-individual behavioural differences from neuroimaging data is a rapidly 

evolving field of research, focusing on individualised methods to describe human brain 

organisation on the single-subject level. One method that harnesses such individual signatures is 

functional connectome fingerprinting, which can reliably identify individuals from large study 

populations. While connectome fingerprints have been previously associated with individual 

cognitive function, these associations rest on indirect evidence.  

Contrasting with these previous reports, here we systematically investigate the link between 

connectome fingerprints and the prediction of behaviour on different levels of brain network 

organisation (individual edges, network interactions, topographical organisation, and edge 

variability), using 339 resting-state fMRI datasets from the Human Connectome Project.  

Our analysis revealed a significant divergence between connectivity signatures that discriminate 

between individuals and those predictive of behaviour on all levels of network organisation. 

Across different parcellation schemes, thresholds and prediction algorithms, we consistently find 

fingerprints in higher-order multimodal association cortices, while neural correlates of behaviour 

display a more variable topological distribution. Furthermore, we find the standard deviation of 

connections between subjects to be significantly higher in fingerprinting than in prediction, making 

inter-individual connection variability a possible separating marker. 

These results demonstrate that participant identification and behavioural prediction involve highly 

distinct functional systems of the human connectome, suggesting that connectome fingerprints 

are not as functionally relevant as previously believed. The present study thus calls for a re-

evaluation of the significance of functional connectivity fingerprints in personalized medicine.  
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Introduction 
 

The mapping of individual cognitive and behavioural performance to neurological patterns, and 

the identification of robust disease biomarkers are primary goals of neuroscience (Castellanos, 

Di Martino, Craddock, Mehta, & Milham, 2013; Woo, Chang, Lindquist, & Wager, 2017). Indeed, 

the ability to predict individual cognitive performance or a subject’s disease progression is 

regarded as a prerequisite for the development of a personalized medicine (Gabrieli, Ghosh, & 

Whitfield-Gabrieli, 2015; Eickhoff & Langner, 2019). This focus on the individual requires a shift 

from group-level to single-subject analyses, moving the focus from finding average differences 

between groups into a more mechanistic understanding of the underlying processes (Finn et al., 

2017).  

 

Connectome fingerprinting represents one such individualised and powerful approach to single-

participant analysis has been viewed as a way to map individual differences in functional 

organisation onto individual cognition and behaviour (Finn et al., 2015, 2017; Emerson et al., 

2017; Waller et al., 2017; Liu, Liao, Xia, & He, 2018; Horien, Shen, Scheinost, & Constable, 2019). 

In connectome fingerprinting individual participants can be reliably identified within large datasets 

with accuracies exceeding 90%, based on the discriminatory power of individual functional 

connectomes. Interestingly, it has been reported that the resting-state networks that best 

discriminate between individuals are the same networks that are predictive of individual 

differences in cognitive performance and behaviour (Finn et al., 2015). However, the assumption 

that networks that best discriminate between individuals are also behaviourally relevant is only 

based on visual inspection of the similarity of networks central for identification and prediction. 

Thus, a robust statistical analysis of the link between the connectivity patterns contributing to 

subject discrimination and behavioural prediction is still missing.  

 

Here, we investigate the relevance of connectome fingerprinting to behavioural prediction. We 

replicate the analysis from Finn et al. (2015), yielding the suggestive overlap based on visual 

inspection. However, a systematic examination of the overlap of the respective network patterns 

shows that discriminatory connectivity signatures and connections predictive of behaviour are 

unrelated, both on single-edge and network levels as well as differ in their topographical 

distribution. These findings are robust with respect to different parcellation schemes, 

psychometric variables and prediction algorithms. Together, our results suggest an alternative 
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perspective on the relation between fingerprinting and behavioural prediction that rests on edge-

level variability.  

 
 
Methods 
 

Dataset 

We used the unrelated subjects sample (n = 339, 156/183 m/f, ages 22-35) from the full release 

of the publicly available Human Connectome Project dataset (Van Essen et al., 2013). In our 

prediction analysis, we excluded subjects that had missing behavioural data in a case-by-case 

fashion (Table 1). The HCP scanning protocol was approved by the local Institutional Review 

Board of Washington University in St. Louis, MO, USA, the details of which are described 

elsewhere (Van Essen et al., 2013). Briefly, for resting state fMRI (rs-fMRI), whole-brain multiband 

gradient-echo-planar images were acquired on a 32-channel 3T Siemens “Connectome Skyra” 

scanner with TR = 720 ms, TE = 33.1 ms, flip angle = 52 degrees, bandwidth = 2,290 Hz/pixel, 

in-plane field of view = 208x180 mm2, 72 slices, 2 mm isotropic voxels and 1,200 volumes (14 

min and 24 s). Rs-fMRI sessions were acquired left-to-right (LR) and right-to-left (RL). 

 

rsfMRI preprocessing 

We closely followed Finn et. al. (2015) in our pre-processing pipeline and used the minimally 

preprocessed rs-fMRI dataset (Glasser et al., 2013). This included gradient distortion correction, 

motion correction, image distortion correction, registration to MNI standard space and intensity 

normalization. We then used the CONN toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012) for 

SPM12, regressing out 12 motion parameters (provided with the HCP dataset under 

Movement_Regressors_dt.txt), mean time courses of white matter, CSF and the global grey 

matter signal (approximating global signal). Linear trend was removed and the data were band-

pass filtered (0.01 – 0.1Hz). We did not perform any smoothing. The resulting voxel-wise time 

series were parcellated using four different atlases: for the main analyses, we used the Shen atlas 

with 268 nodes (i.e., regions of interests (ROIs)) that was also used in Finn et al. (2015); for 

validation, we used the Brainnetome atlas (Fan et al., 2016), the HCP MMP 1.0 atlas (Glasser et 

al., 2016), and the AAL atlas (Tzourio-Mazoyer et al., 2002). For every parcellation scheme, we 

extracted the nodal time series by averaging over all voxels within the respective ROI.  
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The Shen atlas is a whole-brain atlas derived from functional connectivity and defined using a 

group-wise spectral clustering algorithm. The three other atlases cover different levels of detail 

as well as different approaches to the definition of nodes. The AAL atlas provides an anatomy-

based parcellation with 90 cortical and 26 cerebellar nodes. The Brainnetome Atlas (Fan et al., 

2016) is a whole-brain atlas containing a similar number of nodes to the Shen atlas (210 cortical 

and 36 subcortical nodes) and is defined using both anatomical and functional connections. HCP 

MMP 1.0 is a very detailed cortical in-vivo parcellation with 360 nodes. We acquired resting-state 

network definitions for all four atlases. The Shen and Brainnetome atlases provide resting-state 

network definitions for each node, and for the later these are based on the established Yeo-7 

resting-state networks (Yeo et al., 2011). Since the Yeo-7 network definition does not assign 

subcortical nodes to a network, we created an eighth subcortical network. For the HCP MMP 1.0, 

we relied on network assignments supplied by (Ji et al., 2019), partitioning the 360 nodes into 12 

resting-state networks. The AAL nodes were split into 5 resting-state networks based on network 

definitions from (He et al., 2009). Here, we created a sixth cerebellar resting-state network 

including all cerebellar nodes. 

 

Functional connectome  

Individual functional connectomes were built as functional connectivity matrices calculated as the 

Pearson correlation between the time courses of all region-to-region pairs. In the framework of 

functional brain networks (Rubinov & Sporns, 2010), each ROI represents a network node, and 

the connection between two ROIs represents an edge in the network.  

Each participant has two resting state scans (LR and RL encoding) by session, thus creating four 

functional connectivity matrices by individual. We averaged the two matrices from one session 

(LR and RL), resulting in two final matrices (one per session) for every individual (matrix 

dimension: number of nodes by number of nodes, the exact number depending on the parcellation 

scheme). The final functional connectivity matrices were z-scored, and the upper triangle was 

vectorized.  

 

Functional connectome fingerprinting 

Fingerprinting was performed as in Finn et al. (2015). Briefly, the functional connectome of a 

‘source’ subject at timepoint t1 is used to identify the same subject at timepoint t2, referred to as 

‘target’. The target session is identified from a pool of functional connectomes containing both the 
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target connectome as well as connectomes of other ‘distractor’ subjects. Identification is 

performed by correlating the FC vector of the ‘source’ from one of the two scanning sessions 

(e.g., “rest 1”) with the FC vectors of all 339 subjects (including the ‘target’) in the other session 

(e.g., “rest 2”), resulting in 339 correlations. The subject with the highest correlation coefficient is 

picked and assigned a score of 1 if the picked subject matches the target identity (hit), and a score 

of 0 otherwise (miss). This procedure was applied for all possible session 1 to session 2 source-

target pairs (i.e., 339 identifications) and then repeated once more for all session 2 to session 1 

source-target pairs (again 339 identifications). Lastly, we performed a nonparametric permutation 

test with 1000 permutations to examine the statistical significance of our identification analysis. In 

each permutation, the target participant’s and distractor session’s identity were randomized and 

fingerprinting accuracy recorded. P-values were then calculated as the proportion of randomly 

permuted instances exceeding the empirically observed accuracy over all permutations. 

 

Network and edge contributions to fingerprinting 

To assess the contribution of different resting-state networks, we calculated the differential power 

(DP) of different edges (i.e., node-to-node connections), using publicly available scripts (Finn et 

al., 2015). DP of an edge reflects an edge’s “uniqueness” and stability and thus its ability to 

differentiate an individual. First, we exclusively investigated the DP of within-network edges in 

order to reproduce the original analysis. Here, we averaged the DP of all within-network edges 

by their respective network, including edges with zero DP. Secondly, we repeated the analysis 

including between-network connections. We then averaged the DP between and within the 

different resting-state networks, creating a complete network-by-network DP matrix.  

 

Psychometric prediction 

For prediction, we used the Connectome-based Predictive Modelling approach (CPM; Shen et 

al., 2017) and adapted the openly available script from: https://www.nitrc.org/frs/?group_id=51. 

Using this framework, we predicted 30 psychometric variables supplied in the HCP dataset (see 

Supplements). In our main analysis, we focus on 3 behavioural variables of interest and provide 

further results in the supplement. Specifically, we focused on the fluid intelligence score assessed 

by Penn Progressive Matrices for its previous use by Finn et al. (2015) and others (Sui, Jiang, 

Bustillo, & Calhoun, 2020). In order to broaden the scope of our analysis and examine 

psychometric variables unrelated to fluid intelligence, we selected two additional psychometric 
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variables, grip strength and language comprehension (assessed using the Picture Vocabulary 

Task) based on their low correlation with fluid intelligence (r = .02 and r = .20 respectively; Suppl. 

Table 1 for all correlations). 

Behavioural prediction with CPM consists of three steps: feature selection, model building, and 

prediction. Features are selected by calculating the Pearson correlation between each edge in 

the training set and the psychometric variable. Edges are separated into correlated and anti-

correlated edges and thresholded. Here, we tested: p < 0.05, 0.01, 0.005 and 0.001 following 

previous work by Finn et al., (2015). Next, the thresholded correlated and anti-correlated edges 

are summed up, resulting in two summary values (a positive set and a negative set). Positive and 

negative summary values are used as a predictor of the measured cognitive variable in two linear 

regressions using least squares estimates. In the last step, positive and negative summary values 

are calculated for every subject in the test set using the same features identified during the feature 

selection step. The summary network strengths are then used to predict the cognitive variable. A 

detailed description of CPM can be found in (Finn et al., 2015; Shen et al., 2017). 

We used 10-fold cross validation (CV) repeated 100 times, resulting in 10x100 measures of 

accuracy. To evaluate model accuracy, we collected the predicted cognitive scores for each 

subject in each repeat of our CV (i.e., 100 predictions per subject), and averaged across all 

repeats, following Nostro et al. (2018). To evaluate the significance of the relationship between 

the predicted and the measured scores, we performed permutation testing with 1000 

permutations. In each permutation, we correlated the averaged predicted scores with the 

measured cognitive scores found in the HCP data. The p-value (right-tailed) was calculated by 

dividing the permutations that exceeded the non-permuted correlation value by the number of 

permutations plus one. 

Lastly, we used SVR to evaluate the overlap of discriminatory and predictive edges independent 

of CPM. To this end, we repeated the above prediction procedure but removed the feature 

selection and model building steps and instead used SVR for model building. SVR parameters 

were set at default values with no hyperparameter optimization (linear kernel, C = 0.75, lambda 

= 0.0035). We extracted the highly predictive edges using the SVR weights, which were 

thresholded using the same method applied to the PP edges (described below). 
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Overlap between differential power, predictive power, and high variability 

In order to perform our overlap analysis, we required a binarized matrix of edges with high 

discriminatory potential and a binarized matrix of edges with high predictive power. For 

discriminatory power, we thresholded the complete DP matrix, using the 99th percentile of edge 

DP, resulting in a sparse binary matrix of high DP and non-high DP edges. For predictive power, 

all edges selected in at least 80% of CV folds during prediction were used, resulting in binarized 

matrix (PP). In a final step, the overlap was calculated by overlaying the thresholded DP and PP 

matrices and calculating the intersection of positive values. To assess the overlap of fingerprinting 

and high-variability edges, we overlaid the DP matrix with a matrix of the functional connectivity 

standard deviation across participants, thresholded at the 99th percentile. Other thresholds were 

also assessed (see Supplements).  

Furthermore, we investigated the distribution of the standard deviation in all edges of the 

connectome, in edges with high DP, and in edges with high PP for the different psychometric 

predictions. To assess if edge-to-edge overlaps were statistically larger than would be expected 

by chance, we performed a permutation test with 1000 permutations. In each permutation, we 

calculated the intersection between fingerprinting DP edges and a degree-preserving random 

matrix (preserving degrees of PP or SD matrix) using the brain connectivity toolbox (Rubinov & 

Sporns, 2010). 

 

Topographical localization 

To localize regions important to either fingerprinting or the prediction of psychometric variables, 

we calculated the node degree for each region by summing up the number of connected edges 

in the sparse DP matrix (in fingerprinting) and in the sparse PP matrices (in psychometric 

prediction). To compare the topographical organization found in fingerprinting and in prediction, 

we calculated the Spearman correlation between their node degrees and tested for significance 

of the topological overlap using spin permutation testing with 5000 permutations (Alexander-Bloch 

et al., 2018; Váša et al., 2018). Spin permutation allows for correlational analyses of cerebral 

topology while conserving spatial data properties such as non-independence amongst 

neighbouring parcels. 
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Results 
We first replicated the high fingerprinting accuracies and within-network overlap presented by 

Finn et al. (2015). Next, we investigated the overlap between features of interest in fingerprinting 

and prediction on edge-by-edge, network-by-network, and a large-scale topographical level. 

Here, we only present the results for fluid intelligence, language comprehension, and grip strength 

for the positive models of the CPM framework, with a feature selection threshold of p < .01. 

However, results equivalently hold for the negative models as well as for other feature selection 

thresholds (p < .001, .005, .05), and can be found in the supplements (Suppl. Fig. 1-3). 

 

Within-network connections analysis 
Connectome fingerprinting and network distribution 

We observed high fingerprinting accuracy of 96.8% (328/339, permutation-derived p<.001 against 

chance) when identifying individuals from session 1, and 97.3% (330/339, p<0.001) when 

identifying individuals from session 2. Focussing on within-network connections, we observed 

strong involvement of highly discriminatory edges from the medial frontal (MFN), frontoparietal 

(FPN), and default mode network (DMN) as well as minor involvement of the subcortical-

cerebellar network (SCN) (Fig. 1a). These results closely resemble findings by Finn et al. (2015), 

who found comparable accuracies and within-network contributions.  
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Figure 1. Within-network distribution of selected edges and behavioural prediction. 
Panel (a) visualizes the percentage of selected edges for fingerprinting and for prediction within each net-
work, adjusted for the total number of edges in each network. Panels (b-d) show the prediction results of 
three psychometric variables of interest. Language comprehension was evaluated using the picture vo-
cabulary task. 
 
 

Behavioural prediction 

We found a significant correlation between the measured values and the predicted values of fluid 

intelligence (r = .22, p < .001; Fig. 1b). The within-network connections that were most often 

selected as features were found in the MFN, FPN and SCN (Fig. 1a). Akin to Finn et al. (2015), 

networks supporting prediction resembled the networks displaying the highest proportion of 

discriminatory edges in fingerprinting, i.e. both the MFN and FPN contributed to fingerprinting and 

prediction of fluid intelligence (Fig 1a). Further corroborating these findings, we found the DMN to 

be involved in the individual fingerprints but not in the positive prediction models, as was reported 

in (Finn et al., 2015). Motor Network (MN), Visual Network I (VN1), Visual Network II (VN2) and 

the Visual Association Network (VASN) did not strongly contribute to prediction or fingerprinting, 

as edges from those networks did not appear in the 99th percentile of discriminatory nor predictive 

edges.  
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Overall, we observed a significant correlation between measured and predicted values in 12 out 

of 30 psychometric variables (Suppl. Table 2 for all prediction results) including our two other 

variables of interest, language comprehension and grip strength (Table 1, all p-values 

permutation-derived, with n = 1000). When we examined the network contributions to the 

prediction of language comprehension, we found large involvement of within-network edges in 

the MFN, FPN, and VASN, and more discrete involvement of the SCN within-network edges. 

Once more, these networks resembled those best discriminating between individuals. In strength 

prediction, VN2 and the VASN within-network edges were most predictive. In sum, within-network 

analyses of discriminatory and predictive edges seem to suggest that connectome fingerprints 

may be relevant to inter-individual differences in higher-order cognitive functions such as fluid 

intelligence and language comprehension, but not grip strength, in line with previous reports (Finn 

et al., 2015). 

 

Table 1    
Results for Psychometric Prediction    

Psychometric Variable Spearman Correlation p-values Subjects (n) 
Fluid cognition composite score 0.22 .002 318 
Crystalised cognition composite score 0.21 .001 320 
Total cognition composite score 0.25 < .001 318 
Cognitive flexibility 0.18 .006 319 
Fluid Intelligence 0.22 < .001 319 
Sustained Attention (Specificity) 0.17 .015 319 
Grip strength 0.44 < .001 319 
Dexterity 0.23 < .001 320 
Language/Reading Decoding 0.19 .003 320 
Language comprehension 0.19 .004 320 
Spatial Orientation 0.21 .002 319 
Emotion Recognition 0.20 .002 319 
Last row contains the number of subjects with complete data. All p-values are permutation-derived and FDR corrected for all 
behavioural predictions. 

 

 

Overlap analysis 
The above findings notwithstanding, if participant identification and behavioural prediction truly 

rest on the same functional connectome signatures, significant overlap between discriminatory 

and predictive features would be expected beyond the mere resemblance of within-network 
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contributions, i.e., at the level of single edges, between-network connections, and the large-scale 

spatial distribution of discriminatory and predictive nodes. 

 

Single-edge analysis 

First, we investigated the overlap between highly discriminatory edges in fingerprinting and edges 

predictive of behaviour, without averaging or grouping these edges into resting-state networks 

(Table 2 and Fig. 2a). We found that the overlap between discriminatory and predictive edges did 

not exceed chance level for any of the psychometric variables (Table 2). 

 

Table 2     
Overlap between edges with high predictive power and fingerprints 

Psychometric Variable Number of predictive 
edges 

Overlapping 
edges 

Mean ± SD of 
Permutation p-values 

Cognitive flexibility 212 0 1.46 ± 1.09 .81 
Crystalised cognition composite score 149 1 1.69 ± 1.31 .5 
Fluid cognition composite score 258 0 1.72 ± 1.07 .88 
Total cognition composite score 260 0 2.29 ± 1.27 .92 
Dexterity 359 0 0.74 ± 0.76 .58 
Emotion Recognition 245 0 0.55 ± 0.72 .46 
Fluid Intelligence 185 0 0.74 ± 0.81 .55 
Language comprehension 140 0 1.04 ± 1.03 .65 
Language/Reading Decoding 133 3 2.09 ± 1.27 .13 
Sustained Attention (Specificity) 133 1 0.87 ± 0.85 .22 
Grip Strength 785 1 6.59 ± 2.24 .99 
Spatial Orientation 179 2 2.46 ± 1.36 .48 
P-values derived using degree-preserving permutations 

 

 

Furthermore, if discriminatory edges are indeed relevant to the psychometric variables of interest, 

one should be able to predict these scores using the discriminatory edges directly. We tested this 

by modifying our prediction pipeline, replacing the feature selection step and instead directly 

applying the fingerprinting edges in the training data of each CV fold. We then used this set of 

discriminatory edges to predict fluid intelligence, language comprehension, and grip strength in 

the test set. We found that predictions based on discriminatory edges could not significantly 

predict any of the three behavioural variables (Table 3), further corroborating that individual 

fingerprints are not related to behaviour on the single-edge level. 
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Table 3 
Behavioural prediction results using fingerprinting edges for model construction 

Psychometric Variable Correlation p-values Subjects (n) 
Fluid Intelligence -0.19 .069 319 
Grip Strength -0.04 1 319 
Picture Vocabulary 0.03 1 320 
All p-values are FDR-corrected 

 

 

Network analysis 

Next, as individual functional connection weights have low reliability (Noble, Scheinost, & 

Constable, 2019), we investigated the network distribution of edges, this time including both 

within- and between-network connections (Fig. 2b). For fingerprinting, we found a cluster of highly 

connected edges between as well as within the MFN, FPN, and DMN, and to a lesser extent in 

the SCN. This was in stark contrast to between-network connections found in psychometric 

prediction, which displayed a much more variable pattern. Most reliably, predictive features 

included connections between the DMN, the visual networks, and the rest of the brain, with the 

exception of some within-network edges in the MFN and FPN for fluid intelligence. Furthermore, 

analysing the proportion of selected edges by network, we found that fingerprints did not 

significantly relate to fluid intelligence (r = -.08, p = .620), language comprehension (r = -.15, p = 

0.585), nor grip strength (r = -.39, p = .051). Taken together, these findings suggest that even on 

a network level, individual fingerprints were not related to behaviour. 
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Figure 2. Single-edge and between-network overlap for fingerprints and prediction. 
In panel (a), grey lines mark highly discriminatory edges for fingerprints and predictive edges for behav-
iour, both thresholded at the 99th percentile. Red lines, only available for strength, visualize overlap. For 
fluid intelligence and language comprehension, no edges overlapped. Panel (b) shows the entire network-
by-network matrix of selected edges, adjusted for total number of edges. 
 

 

 

Topological analysis of nodes with high degree of predictive edges 

Next, we investigated the overlap on a large-scale topological level. We found that discriminatory 

nodes (i.e., nodes with high degree of discriminatory edges) clustered almost exclusively in the 

superior frontal, inferior parietal, and superior temporal regions (Fig. 3a). In line with our network-

derived findings, predictive nodes displayed a more variable spatial distribution (Fig. 3b-d) and, 

importantly, largely covered different parts of the cortex compared to discriminatory nodes. 

Corroborating these observations, there was no correlation between the spatial distribution of 

nodes in fingerprinting and any behavioural prediction (Fig. 3b-d, right panel, all p-values derived 

using spin permutation), again suggesting the spatial organisation of discriminatory nodes was 

not related to behaviour. 
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Figure 3. Spatial distribution of node degrees. 
Distribution of node degrees for discriminatory nodes (a) and behaviourally predictive nodes (b-d) on the 
left. The edges underlying the node degrees are thresholded at the 99th percentile of discriminatory poten-
tial or predictive power. The right-hand side displays the spin permutation results, with red lines marking 
the empirical correlation of discriminatory and predictive nodes.  
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Variability analysis 

Subsequently, we performed an exploratory analysis to investigate how edge properties relate to 

the divergence between discriminatory and predictive connectome features. Focussing on edge 

standard deviation of functional connectomes, we discovered that discriminatory edges generally 

show high variability across participants (Fig. 4). Investigating the variability by comparing the 99th 

percentile of discriminatory edges in fingerprinting and the 99th percentile of edges with high 

standard deviation showed a strong and significant (122/358, p < .001) overlap, which increased 

even further when thresholding at the 98th percentile (179/358, p < .001) and the 95th percentile 

(286/358, p < .001; all p-values permutation-derived, Fig. 4a). Furthermore, edges used in 

prediction showed significantly lower variability for all three psychometric variables (p < .001, 

FDR-corrected) than discriminatory edges (Fig. 4b). Taken together, fingerprinting signatures 

significantly overlap with edges showing higher variability in connectivity across subjects, while 

edges predictive of behaviour are constrained to edges with intermediate variability.  

 

 
Figure 4. Overlap of fingerprints and high-variability edges. 
In panel (a), black lines designate overlapping edges between the top one, two or five percent of discrimi-
natory edges and high-variability edges. Grey lines depict lower-variability discriminatory edges. Panel (b) 
shows the distribution of edge standard deviation across participants. *** p < .001, FDR-corrected. 
 

  

Validation analysis 
Firstly, we repeated the analysis of edge-level overlap between discriminatory edges and 

predictive edges for all three behaviors, using Support Vector Regression instead of CPM. This 

independent prediction method corroborated the lack of overlap for all tested behaviors (Suppl. 
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Table 3). Additionally, we tested whether we could replicate our findings using different 

parcellation schemes. Focusing on the prediction of fluid intelligence, we observed significant 

correlations between predicted and measured intelligence scores using CPM with all three atlases 

(Brainnetome: r = .26, p < .001, HCP: r = .18, p = .001, AAL: r = .19, p < .001). We also achieved 

fingerprinting accuracies of more than 90% for all atlases, with the HCP MMP1 atlas resulting in 

accuracies of up to 99% (Suppl. Table 4). Our findings concerning a lack of overlap between 

discriminatory and predictive edges held true for between-network, anatomical and single-edge 

overlap (Brainnetome: n = 3/301, p = .137, HCP: n = 3/646, p = .164, AAL: n = 0/67, p = .269) in 

all three parcellation schemes (Fig. 5a-b). We were also able to replicate the relationship between 

edge-variability and fingerprinting, showing a high overlap between the most discriminatory edges 

and edges with high standard deviation (Fig. 5c), as well as the significantly lower variability in 

edges predictive of behaviour (Fig. 5d). 
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Figure 5. Control analyses for different functional atlases. 
Results for Brainnetome, HCP MMP 1.0, and AAL atlases (left to right). From top to bottom, panels visual-
ize (a) within and across-network connections, (b) spatial topology and spin permutation of nodes for fluid 
intelligence and fingerprinting, (c) the overlap of individual edges between fingerprints and high-variability 
edges, and (d) the distribution of edge standard deviations over participants in fingerprinting and behav-
ioural prediction. *** p < .001, FDR-corrected. 
 
 

Discussion 

In the present study, we show that fingerprinting signatures and behavioural prediction rest on 

highly distinct functional systems of the human connectome. We were able to replicate the 

seminal findings by Finn et at. (2015) demonstrating high accuracy in participant identification 

with connectome fingerprinting as well as the importance of within-network edges in higher-order 

resting-state networks for both prediction and fingerprinting. These findings have been interpreted 

as supporting the functional relevance of fingerprinting signatures, that is, networks that best 

discriminate individuals from one another are also strongly involved in cognitive function (Finn et 

al., 2015, 2017). However, these findings were restricted to a specific level of analysis (group-

level within-network connections), necessitating further exploration into whether participant 

identification and behavioural prediction truly rest on the same functional connectome signatures. 

Here, we found evidence to the contrary, as there was a strong divergence between functional 

signatures supporting prediction of behaviour and connectome fingerprints. This held true on a 

network level, if we considered both within as well as between-network connections, on the level 

of single edges, and on the level of large-scale spatial organisation of discriminatory and 

predictive nodes. Thus, comparing the underlying patterns recruited during prediction and 

fingerprinting, we found no overlap that could justify the argued relationship between them. 

Additionally, as a positive control, we directly used individual fingerprints for the prediction of 

behaviour and found this to be unsuccessful, further corroborating our findings. To address the 

many degrees of freedom in the design of the analysis, we also show that our findings are highly 

robust against varying methodological choices. Specifically, we used four parcellation schemes, 

two prediction methods, and tested different feature selection thresholds. In sum, the results 

presented here suggest that discriminatory and predictive signatures of the human connectome 

rely on highly distinct functional systems. 

In this regard, our findings expand on the recent notion of a dichotomy between resources 

valuable to subject identification and behavioural prediction. While this dichotomy has been 

shown to apply with respect to different imaging modalities (Mansour L, Tian, Yeo, Cropley, & 
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Zalesky, 2021) here we show the separation to be present within a single modality. In this context, 

we here discovered that the variability of individual edges strongly distinguishes between 

fingerprinting and prediction and we propose this variability to be at the root of the dichotomy. 

Discriminatory edges, but not predictive ones, showed a substantial overlap with edges that are 

highly variable across participants. The different mechanisms underlying fingerprinting and 

prediction might clarify these findings. As an example, CPM selects edges which show significant 

correlation between functional connectivity and a behavioural outcome measure in the sample 

during feature selection. Thus, CPM is still a group-level procedure and requires edge variation 

to be linearly related to behaviour in order to be selected for prediction. In contrast, in 

fingerprinting, edges are selected based on intra-subject similarity, given sufficient inter-subject 

variability. Importantly, here, no group-relationship is considered. CPM and fingerprinting thus 

relate differently to edge variability, i.e., edges selected in CPM need to covary with behaviour, 

whereas fingerprinting is impartial to the source of edge variability. As a consequence, the high 

variability of functional connections selected in fingerprinting could result from a range of sources. 

For example, variations could stem from differences in functional network topology (Gordon, 

Laumann, Adeyemo, & Petersen, 2017) or structural variability such as differences in cortical 

thickness (Mueller et al., 2013), or folding patterns (Duan et al., 2019). These differences might 

also result in stable variation in functional connectivity, whilst not necessarily relating to behaviour 

in a linear fashion. We believe that the increased variability in multimodal brain regions (Mueller 

et al., 2013; Paquola et al., 2019; Seitzman et al., 2019) leads to a higher likelihood of individual 

variants from different sources. As a consequence, we observe clusters of discriminatory edges 

in these regions when averaging the discriminatory potential of individual edges over all 

participants. The significance of these structural and functional variations is difficult to discern, 

our results point to the variation exploited during fingerprinting not being related to behaviour. 

Further research will be necessary to establish whether edge variability also serves as a 

separating marker in other imaging modalities and whether the findings by (Mansour L et al., 

2021) might also be supported by the proposed relationship between fingerprinting, behavioural 

prediction, and signal variability. 

 

Limitations 

We closely followed Finn et al. (2015) in the pre-processing steps and used the same methods 

for the identification of subjects, the prediction of behaviour and the extraction of high-value edges 

for fingerprinting (Shen et al., 2017). Furthermore, we mirrored the data analysis pipeline, initially 
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focussing on within-network edges. Nonetheless, while we found functional connectivity to be a 

significant predictor of fluid intelligence with an accuracy similar to other published work 

(Ferguson, Anderson, & Spreng, 2017; Greene, Gao, Scheinost, & Constable, 2018), we did not 

achieve the high prediction scores reported in Finn et al. (2015). There are different possible 

explanations for this, one of them being our use of the unrelated sample from the HCP database. 

This sample has the advantage of being larger and thus more robust to overfitting, and it assures 

the independence between subjects during cross-validation (Poldrack, Huckins, & Varoquaux, 

2020). However, this independence might have influenced our prediction accuracies. 

Furthermore, we used 10-fold cross validation instead of leave-one-out cross validation 

(Varoquaux et al., 2017). 

 

Conclusion 

In contrast to initial reports linking connectome fingerprinting signatures directly to behaviour, we 

here show in detail that participant identification and behavioural prediction from individual 

connectomes rely on highly distinct functional brain systems. This divergence raises the question 

what the variability sustaining individual fingerprints ultimately relates to. Parsimony suggests that 

neurological variation should also be linked to phenotypic presentation, yet our results indicate 

that there is no simple one-to-one mapping between function and fingerprints. As such, further 

methodological development and conceptualization will be necessary to deepen our 

understanding of individual functional signatures and their behavioural and biological significance.  
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