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Abstract

Fractal analysis represents a promising new approach to structural neuroimaging data,

yet systematic evaluation of the fractal dimension (FD) as a marker of structural brain

complexity is scarce. Here we present in-depth methodological assessment of FD esti-

mation in structural brain MRI. On the computational side, we show that spatial scale

optimization can significantly improve FD estimation accuracy, as suggested by simula-

tion studies with known FD values. For empirical evaluation, we analyzed two recent

open-access neuroimaging data sets (MASSIVE and Midnight Scan Club), stratified by

fundamental image characteristics including registration, sequence weighting, spatial res-

olution, segmentation procedures, tissue type, and image complexity. Deviation analyses

showed high repeated-acquisition stability of the FD estimates across both data sets,

with differential deviation susceptibility according to image characteristics. While less

frequently studied in the literature, FD estimation in T2-weighted images yielded robust

outcomes. Importantly, we observed a significant impact of image registration on abso-

lute FD estimates. Applying different registration schemes, we found that unbalanced

registration induced (a) repeated-measurement deviation clusters around the registration

target, (b) strong bidirectional correlations among image analysis groups, and (c) spurious

associations between the FD and an index of structural similarity, and these effects were

strongly attenuated by reregistration in both data sets. Indeed, differences in FD

between scans did not simply track differences in structure per se, suggesting that struc-

tural complexity and structural similarity represent distinct aspects of structural brain

MRI. In conclusion, scale optimization can improve FD estimation accuracy, and empiri-

cal FD estimates are reliable yet sensitive to image characteristics.
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1 | INTRODUCTION

Fractal analysis has attracted increasing interest from the neuroscience

community as a versatile new tool for the analysis of structural brain

data on a cellular as well as a macroscopic scale and in both health and

disease (Di Ieva 2016; Di Ieva, Esteban, Grizzi, Klonowski, & Martín-

Landrove, 2015; Di Ieva, Grizzi, Jelinek, Pellionisz, & Losa, 2014). Frac-

tal geometry, prominently developed by Mandelbrot (1983), features

the fundamental insight that real-world objects do not adhere to the

smooth whole-integer dimensions of Euclidean geometry and are

instead more adequately described by the fractal dimension (FD),

which is not limited to integers and can be regarded as a measure of

morphometric complexity (Di Ieva 2016; Mandelbrot, 1967). While

natural objects are constrained to finite physical scales and their self-

similarity is rather statistical than compositional, the analysis of an

object's fractal properties has proven insightful in a variety of fields,

from the inanimate (e.g., coastlines, clouds, lightning) and the cellular

(e.g., protein surfaces, viral receptor molecules, cellular shapes) up to

the realm of higher-order organisms (e.g., human bronchial and vascu-

lar ramifications; Di Ieva et al., 2015, Di Ieva 2016; Di Ieva, Grizzi,

et al., 2014; Mandelbrot, 1967, 1983). In biomedical neuroimaging,

fractal analysis can be applied to estimate structural brain complexity

(cf. Di Ieva 2016), i.e. the topological complexity of brain tissue seg-

mentations as obtained from structural neuroimaging data, most com-

monly anatomical MRI. As such, fractal analysis has been employed in

the anatomical description of cortical geometry (Im et al., 2006;

Kiselev, Hahn, & Auer, 2003), and the FD has shown promise as a bio-

marker in the detection of early tissue alterations in multiple sclerosis

(Esteban et al., 2007, 2009), brain abnormalities in infants with intra-

uterine growth restriction (Esteban et al., 2010), atherosclerotic white

matter lesions (Takahashi et al., 2006), morphological changes in multi-

ple system atrophy of the cerebellar type (Wu et al., 2010), angi-

oarchitecture of cerebral arteriovenous malformations (Di Ieva et al.,

2014), the cortical features in Alzheimer's disease (King et al., 2009,

2010; Ruiz de Miras et al., 2017), cerebral tumors (Iftekharuddin,

Zheng, Islam, & Ogg, 2009), age-related brain atrophy (Madan &

Kensinger, 2016) as well as traumatic (Rajagopalan et al., 2018) and

age-induced (Reishofer et al., 2018) white matter changes.

However, while fractal analysis is now being applied in both fun-

damental research and clinical investigations, there is a relative scar-

city of literature on the methodological evaluation of the FD in

structural brain MRI. On the computational side, one aspect that war-

rants further study regards the optimal range of spatial scales for

empirical estimation, i.e. the regression intervals applied to the log-

transformed data, specifically with respect to the commonly applied

3D box-counting procedure. We here employ a simple spatial optimi-

zation procedure that automatically selects the optimal scale range for

each individual estimation, and we present a series of simulation stud-

ies with known expected FDs to examine performance against non-

optimized estimation.

Empirically, further examination is warranted with regard to the

impact of fundamental image characteristics on the FD estimates, for

instance regarding segmentation procedures, tissue type, image com-

plexity, image registration, and spatial resolution. Moreover, it is impor-

tant to assess the stability of the FD over multiple repeated acquisitions,

since a reasonable test–retest reliability is an essential prerequisite for

a biomarker's diagnostic capacity. Furthermore, T1-weighted images

(T1WI) have been the mainstay of neuroimaging studies implementing

fractal analysis such that systematic evaluation regarding the utility of

T2-weighted images (T2WI) in fractal analysis is comparatively scarce,

even though the latter are essential to both fundamental neuroimaging

research and clinical neuroradiological assessment.

To address these empirical questions, we analyzed structuralMRI data

from two independent openly available neuroimaging datasets. On the

one hand, this includes the recently published Multiple Acquisitions for

Standardization of Structural Imaging Validation and Evaluation database

(MASSIVE, cf. Froeling, Tax, Vos, Luijten, & Leemans, 2017), featuring

10 repeated T1WI and T2WI acquisitions over a short amount of time.

We hypothesized that in such an acquisition procedure, it is reasonable to

assume that there was essentially no change in the underlying structural

brain complexity and that, therefore, the estimated FD values should

show high stability across these short-interval measurements, allowing for

detailed image parameter-dependent analyses. While this data set is thus

well-suited to examine the above questions, it also emanates from a single

subject, potentially restricting the generality of our findings. Therefore, we

extended our analyses to the recently presented Midnight Scan Club

(MSC) data set (Gordon et al., 2017), featuring repeated short-interval

acquisitions of T1WI and T2WI in 10 subjects. Our approach to the points

raised above then rests on an image processing procedure differentiating

between sequence weighting, spatial resolution, segmentation method,

tissue type, and image complexity reduction by skeletonization (see

Section 2.1). As detailed below, this leads to a stratification of 32 distinct

image analysis groups. We then apply fractality estimation with spatial

scale optimization on the 3-dimensional input volumes obtained from

image processing and implement a systematic analysis of the resulting FD

estimates. The latter features a combination of random and systematic

resampling methods, deviation detection, assessment of the sample distri-

butions, similarity comparison, unsupervised machine learning techniques,

correlation analyses, and image parameter-dependent group comparisons.

Based on these analyses, we assess (a) parameter-dependent repeated-

sampling deviations, both within analysis groups and across the two data

sets, (b) the impact of image registration on the FD estimates, (c) the

within- and across-subject FD sample distributions, (d) the estimated opti-

mal spatial scales across data sets, subjects, and processing parameters,

(e) the relationship between the FD and structural similarity, and (f) the

impact of image weighting, spatial resolution, and processing parameters

on the FD estimates.

2 | METHODS

2.1 | Image acquisition and processing

Structural MRI in the MASSIVE data set were acquired on a clinical 3T

system (Philips Achieva). The data emanate from a healthy 25-year-old

female subject scanned in five sessions occasions over an interval of
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2 weeks. Ten T1WI and T2WI were collected, each reconstructed with

1 mm3 isotropic resolution, and data for both weightings were re-

sampled to 2.5 mm3 isotropic resolution, resulting in the four image

categories T1 high resolution, T1 low resolution, T2 high resolution,

and T2 low resolution for further processing. Data were registered to a

common space using a rigid registration algorithm (http://elastix.isi.uu.

nl, see Klein, Staring, Murphy, Viergever, & Pluim, 2010; Shamonin

et al., 2014) with the first T1 volume as the registration target. For

additional details on the acquisition procedure, please refer to Froeling

et al., 2017. The MASSIVE data set is openly available from www.

massive-data.org.

Structural MRI in the MSC data set were obtained on a 3T scanner

(Siemens TRIO) across two separate days, with each session starting

at midnight. Four T1 and four T2 scans with 0.8 mm3 isotropic resolu-

tion were acquired in each of the 10 healthy subjects (5 females,

5 males; age range: 24–34 years). Additionally, subject #8 had one

extra T1 scan, and subject #6 had five T1 scans and six T2 scans in

total, which we included in our analyses wherever feasible. Similar to

the above, data were resampled to a 2.5 mm3 isotropic resolution, and

subject-wise rigid-body registration to the respective subject's first T1

volume was carried out. For further details on the data set, see Gor-

don et al., 2017. The MSC data set is openly available from https://

openneuro.org.

A standard FSL-based pipeline (Jenkinson, Beckmann, Behrens,

Woolrich, & Smith, 2012; Smith et al., 2004; Woolrich et al., 2009)

was used to preprocess the MR images for subsequent fractal analy-

sis. Specifically, the brain extraction routine (BET) was applied to all

individual 3D volumes with default fractional intensity threshold

(Smith, 2002). The brain-extracted images entered the FAST routine

for tissue segmentation into gray matter (GM), white matter (WM),

and cerebrospinal fluid classes with default analysis parameters

(Zhang, Brady, & Smith, 2001). Intensity inhomogeneity was accom-

modated by iterative bias-field correction. We estimated partial vol-

ume maps for each of the three tissue classes, of which the GM and

WM estimates entered fractal analysis. For qualitative comparison, we

also included a forced-decision binary classification (“hard” segmenta-

tion), in which voxels are labeled as 0 or 1 for a specific tissue class.

Based on these segmentations, 3D image skeletons were estimated

for each input volume. Image skeletons are the result of an iterative

reduction process that computes a minimum complexity version of

the input image. We here apply a publicly available 3D parallel thin-

ning algorithm to build the skeleton models of the respective input

volume (Kerschnitzki et al., 2013; Lee, Kashyap, & Chu, 1994). Intui-

tively, image skeletons aim at capturing the “essence” of an image and

are thought to be more sensitive to pathological changes in some

cases (Esteban et al., 2007, 2009, 2010; Jiménez et al., 2014;

Sheelakumari et al., 2017), which is why we include them in the pre-

sent study. We thus obtain an additional complexity-reduced skeleton

model for every input volume. In summary, the combination of image

parameters amounts to a total of 32 analysis groups, on which we

base the taxonomy applied throughout the manuscript: image

weighting (T1 vs. T2), spatial resolution (low vs. high), segmentation

procedure (partial volume estimates (pve) vs. binary segmentation

(bin)), tissue type (gray matter (GM) vs. white matter (WM)), and image

complexity reduction (skeletonized vs. unskeletonized images, where

the former is abbreviated by “Skel”). Figure 1 summarizes the analysis

stratification (Panel a) and provides an example of the processing

results (Panel b) as well as a 3D rendering of the corresponding skele-

ton models (Panel c).

2.2 | Fractal estimation and spatial optimization

The volumes obtained from preprocessing provided the input for the

estimation of the 3D FD. In the empirical sciences, the FD of an object

A is commonly estimated by the box-counting dimension Db given by

F IGURE 1 Analysis stratification and image processing. Panel
(a) represents a schematic of the applied analysis stratification. Panel
(b) visualizes this procedure for the first volume of the T1 high
resolution images in the MASSIVE data set. Note the absence of gray
voxels in the binary forced-decision segmentations (bin) as compared
to the partial volume estimates (pve). For each processed volume,
image skeleton models were estimated, a 3D rendering of which is
visualized for the WM_pve and GM_pve segmentations in Panel
(c). The 3D volumes then entered the fractal dimension estimation.
bin, binary segmentations; GM, gray matter; pve, partial volume
estimates; Skel, skeleton model; WM, white matter [Color figure can
be viewed at wileyonlinelibrary.com]
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Db Að Þ= lim
x!0

logN xð Þ
log 1

x

ð1Þ

where x is the box edge length and N(x) the minimum number of

boxes needed to cover the object under scrutiny (cf., Di Ieva, Grizzi,

et al., 2014). Box-counting was applied here based on a function from

the openly available calcFD toolbox (Madan & Kensinger, 2016). Due

to the finite physical scales of natural objects, Db(A) is in practice cal-

culated as the slope of the linear regression line over an interval of

x in the log–log plot (see Gneiting, Šev�cíková, & Percival, 2012, for

detailed treatment of the ordinary least squares regression fit in

box-counting). In terms of structural MR images, these intervals corre-

spond to the range of voxel unit edge sizes over which the box-

counting dimension is computed. In this context, consider a finite

sequence Xk of spatial scales defined as

Xk ≔ xkð Þk =0,1,…,n = x0,x1,…,xnð Þ, withn2N, and xk ≔ bk ð2Þ

where b defines a scale base and k specifies the exponents to be

tested. For instance, we here define b = 2 and k = 0, 1, ..., 8, yielding

Xk = (1, 2, 4, 8, 16, 32, 64, 128, 256). Nonetheless, the above raises

the question over which particular range of k (i.e., which subsequence

of Xk) one should compute the box-counting regression in order to

obtain the best FD estimate. One common solution is to simply define

the k-range for the estimation and keep it fixed over repeated estima-

tions. This, however, entails the danger of introducing inaccuracies as

it disregards potential differences between subjects, scanning ses-

sions, or processed input volumes. Another option is to base the defi-

nition on prior validation studies suggesting an optimal range of k for

a particular image analysis group (see e.g., Esteban et al., 2009;

Jiménez et al., 2014). Albeit an improvement, optimal spatial scales

may depend on the scanning equipment, image processing, or estima-

tion algorithm applied, and there is no principled reason to believe

that the best regression intervals generalize uniformly from one popu-

lation to another. As such, a more flexible and data-driven decision

criterion may be desirable. We here apply a simple procedure to help

alleviate this issue. Let |Xk| denote the number of elements in the

sequence of spatial scales resulting from Equation (2), and let ω ≤ |Xk|

indicate the upper bound on regression interval length, with ω = |Xk|

representing the case in which we allow estimation over all spatial

scales in Xk (i.e., here, k = 0, ..., 8). However, we may also estimate the

FD over a subsequence of spatial scales (e.g., k = 2, ..., 5). Let τ ≥ 2

denote the lower bound on the number of elements in this subse-

quence, that is, the minimum length of the regression interval over

which fractality estimation is carried out. The number of spatial scales

of at least length τ and at most length ω is then given by the number

of subsequences of Xk,

m=
n n+1ð Þ

2
,where n=ω−τ +1,andω> τ: ð3Þ

For a specified lower and upper bound on the regression interval, we

thus obtain m possible k-ranges over which to carry out the estimation,

yielding a set of m regression models. From this set, we may then choose

the best-fitting model as suggested by the highest adjusted coefficient

of determination R2
adj, where standard adjustment (Fritz, Morris, &

Richler, 2012) is applied due to the varying cardinality of the different

tested k-ranges. The slope estimator of the thus selected model is

then chosen as the optimal FD estimate, in the sense of being the best

guess in approximating the true but unknown underlying dimension

value based on the box-counting results.

In this context, empirical estimation faces the challenge that the

true underlying fractal properties of the natural object are unknown,

making it intrinsically difficult to judge estimation accuracy. In order to

examine the performance of the outlined procedure, we therefore ran a

series of simulation studies, in which we applied the estimation process

to objects whose FD is known and which can thus serve as a bench-

mark. Specifically, we created a series of 3D random Cantor sets whose

expected FD is specified by the probability of retaining a particular sub-

set during iterative removal (Falconer & Grimmett, 1992; Moisy, 2008).

For each random Cantor set, we then estimate its FD over both the

respective optimal spatial scales and over a randomly chosen non-

optimal interval. This randomization approach avoids prior assumptions

about the estimation quality across non-optimal scales and obviates

arbitrary choices about which specific non-optimal scale to use as a

baseline for the comparison to optimal k-ranges. Furthermore, the

applied set of k-values in Equation (2) (i.e., k = 0, ..., 8) ensures compre-

hensive coverage of possible spatial scales in the simulated fractal set

(as the size of the latter was 28). We thus place no prior constraints on

which k-ranges are expected to yield better estimation accuracy than

others. Following initial parameter search in fixed benchmarking objects,

we here apply τ = 4 (i.e., computing the regression over at least four contig-

uous spatial scales; τ = 3 yielded similar outcome) and ω = | Xk | = 9

(i.e., allowing a maximum interval over all examined spatial scales), leading

to m = 21 different models based on Equation (3). Figure 2 relates the

corresponding simulation results: Panel (a) displays the exemplary estima-

tion of a non-fractal object (cube with expected FD = 3) and a fractal object

(3D random Cantor set with expected FD ≈ 2.7655). Compared to random

non-optimal spatial scales, the outlined procedure improved estimation

accuracy by several orders of magnitude (e.g., the arbitrary k-range esti-

mates the Cantor set correctly to the first decimal, while the optimal

k-range first deviates from the expected FD only in the fourth decimal

place), even though R2
adj was very high in both cases. We then con-

ducted a systematic simulation study, for which we created n=100

distinct random Cantor sets for eight different retainment probabili-

ties (from p= .6 to p= .95) yielding expected FD values in the range

between 2 and 3 (with the aim of covering a biologically plausible

range for FD estimates in brain MRI). Panel (b) displays the results of

the subsequent fractality estimation over optimized and random

non-optimal scales. Here, the proposed spatial optimization proce-

dure produced improved estimation results in virtually all simulation

iterations and for all expected FD values. In contrast, choosing a random

non-optimal spatial scale led to both pronounced over- and underestima-

tion of the expected FD, and comparing estimation variance with

Levene's test suggested that optimized estimation precision was superior
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to non-optimal spatial scales at p< .001 for all retainment probabilities

(right subpanel). However, these simulation results also suggested that

performance against optimization was not uniform across all non-optimal

spatial scales; under- and overestimation of the true FD varied from

moderate to severe depending on how non-optimal the particular

control interval was. Furthermore, panel (c) visualizes a read-out of

which spatial scales were selected as optimal over the various simula-

tion iterations. Optimization outcomes were selective (i.e., only a few

of the 21 k-ranges were ever selected as optimal), showing a preference

for lower k-values and shorter interval lengths with high consistency over

the different retainment probabilities. Given these findings, we ran an

additional simulation study to compare optimization outcomes against a

set of fixed (i.e., non-random) k-ranges, summarized in Figure A1 in the

online Appendix. While our optimization procedure resulted in improved

estimation accuracy for all these comparisons, the magnitude of this

improvement varied with the particular fixed k-range and the expected

FD. Improvement of estimation accuracy was less pronounced in those

k-ranges that were more often selected as optimal (e.g., k=0, ..., 4 as

used by Madan & Kensinger, 2016) and more pronounced in those k-

ranges that were less often selected as optimal (e.g., k=1, ..., 4). Further

details are reported in the Appendix. Based on these simulation studies,

we applied the same estimation and optimization parameters to the FD

estimation in the empirical data.

2.3 | Data analysis

2.3.1 | Deviation analysis

With the outlined processing stratification, we obtained a total of

320 FD estimates in the MASSIVE data set (10 subject scans × 32

analysis groups) and 1,344 FD estimates in the MSC data set (42 sub-

ject scans × 32 analysis groups). In order to qualitatively assess the

data within each analysis group, we first applied a combination of ran-

dom and systematic resampling procedures. Specifically, we per-

formed a bootstrapping procedure in order to randomly sample the

mean and the 99% normal approximation confidence interval (CI) of

the FD over 2,000 resampling iterations. Bootstrapping provided an

objective way of qualitative data assessment in terms of the tightness

of the CI, which served as an indicator for the deviations within the

analysis group, and the presence or absence of a skew in the clusters

of the resampled means, indicative of important singular deviations in

the raw estimates. Moreover, the bootstrapped CI was subsequently

assessed as one of several criteria to identify meaningful deviations in

the sampled FDs within each analysis group. We then applied a jack-

knife procedure, in which we systematically resampled the means by

iteratively omitting each of the scans within the group in order to see

if the variance changed significantly as assessed by Levene's tests. We

then made the explicit assumption that the FDs obtained within each

analysis group were sampled from a true but unknown normal distri-

bution. We fitted a Gaussian distribution to the sampled FDs and

assessed the coherence to a corresponding theoretical distribution by

means of a quantile–quantile plot. In order to examine whether the

F IGURE 2 Fractal dimension estimation with spatial scale
optimization. Panel (a) contrasts estimation results over optimal
and arbitrary k-ranges for a non-fractal (cube) and a fractal object
(3D random Cantor set) whose expected fractal dimension values
are known. In both examples, optimization increases estimation

accuracy by several orders of magnitude. Panel (b) displays the

results of a random Cantor set simulation over varying retainment

probabilities, yielding different expected fractal dimensions. Green

crosses correspond to the outlined optimization procedure, while

red crosses indicate estimation results over randomly chosen non-

optimal spatial scales. The right subpanel relates the difference

from the respective expected fractal dimension values over all

estimations for the different retainment probabilities. Choosing a

non-optimal spatial scale led to both pronounced over- and

underestimation of the expected FD, and optimized estimation

precision was superior to non-optimal spatial scales for all

retainment probabilities. Panel (c) visualizes which spatial scales

were selected as optimal over all simulation iterations.

Optimization results showed a preference for lower k-values and

shorter interval lengths for all retainment probabilities [Color

figure can be viewed at wileyonlinelibrary.com]
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sampled data was reasonably assumed to follow a normal distribution,

we furthermore computed the Shapiro–Wilk test (Shapiro & Wilk,

1965), applicable to assess composite normality for smaller sample

sizes.

As an example, Figure 3 visualizes these analysis steps for the

exemplary group of binarized and skeletonized WM images in the T2

low resolution category (T2 low WM_Skel_bin) in the MASSIVE data

set. The same analysis steps were applied to all 32 analysis groups in

both data sets. In doing so, we sought to define a sensible criterion of

when to “flag” an FD value due to a meaningful deviation within an

analysis group. To this end, we compared various measures to find a

balanced trade-off between detection and discrimination ability. First,

we assessed whether a single FD value was inside or outside the

bootstrapped CI. As a second method, we assessed whether a

particular value was within one or respectively two standard devia-

tions (SDs) of the sample mean. Third, we assessed whether the vari-

ances of the jackknife means significantly differed from one another

by evaluating Levene's test. Furthermore, we computed the Grubbs

test to detect outliers within a given analysis group (Grubbs, 1969).

The different methods were then assessed in terms of the original

data and the effect that removing a flagged value had on the analysis

in Figure 3. Specifically, we checked the flags against whether or not

they occurred in groups in which the assumption of composite nor-

mality was first violated when considering all raw estimates, whether

the removal of the flagged volume changed this, and if a deviation cri-

terion would identify those analysis groups selectively. Based on the

above points, the first method was deemed too conservative because

the CI was tighter than even the one SD interval of the sample mean

F IGURE 3 Main steps of within-group deviation analysis. The figure displays the deviation analysis for the exemplary analysis group of low-
resolution T2 WM partial volume estimates in the MASSIVE data set. Panel (a) shows a near-uniform resampling distribution for bootstrapping,
indicating the absence of a priori weights. Panel (b) displays the bootstrapped mean fractal dimensions as well as the resulting 99% CI and
average over all bootstrapped means. Panel (c) plots the raw estimates for the 10 scans in the data set and their sample mean, together with the
bootstrapped CI and the intervals spanning one and two SDs, respectively. Panel (d) represents the jackknife means (i.e., systematic resampling),
where each of the 10 raw estimates was iteratively omitted to compute the mean over the remaining nine samples. Levene's test to see if the
variances of the thus obtained means significantly differed from one another was insignificant. Panel (e) shows a quantile–quantile plot for the
original data versus a fitted normal distribution, where a theoretical Gaussian would precisely follow the reference line. The values of the current
analysis group reasonably adhere to this reference, and the test decision suggested that assuming composite normality was acceptable. Panel (f)
shows the corresponding estimated normal distribution together with the cluster of the sampled FDs. The same procedure was applied to all
32 analysis groups in both the MASSIVE and the MSC data sets. CI, confidence interval; FD, fractal dimension; PDF, probability density function;
SD, standard deviation [Color figure can be viewed at wileyonlinelibrary.com]
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and because it was sensitive to arbitrary choices regarding the type of

computation (normal approximation vs. percentile-based, studentized

or not, etc.). Systematic resampling nicely showed the qualitative

effect that a single volume had on the overall mean and its variance

but resulted in limited sensitivity in multivariate testing, despite

increased accuracy in case of non-normality. Jackknife resampling was

thus considered too liberal for our purposes given the cases of

deviation-induced non-adherence to composite normality. When the

1 SD interval around the sample mean was considered, volumes were

more selectively flagged. However, this criterion does not account for

the range of the data scatter, which was generally very small within

analysis groups. See for example, Figure 3, where the data were sam-

pled in the subdecimal scatter range of well under 0.03. As a result,

scanning sessions were flagged with relatively low selectivity, which

was alleviated by choosing a 2 SD interval around the sample mean.

Even more selective, the Grubbs test procedure closely flagged non-

adherence to composite normality, which was generally reversed after

removal of the flag. Therefore this method was deemed the most

appropriate criterion with the more conservative 2 SD method as a

cross-check. For an exemplary identification of a flag, see Figure 4,

relating the results for T1 high GM_pve images in the MASSIVE data

set. Here, Grubbs testing flags the FD that corresponds to the first

scanning session (note that the more conservative 2 SD criterion

equivalently identifies this flag). Systematic resampling shows that

omitting the flagged value causes an upward shift of the mean and

reduces its variance but this does not reach significance level in multi-

variate testing. The flagged FD causes the assumption of composite

normality to be invalid although the remaining samples tightly follow

the reference for normality. Omitting the flag restores normality and

clearly “tightens” the distribution, while nonparametric distribution

comparison was insignificant. Based on the results of the deviation

analysis within each analysis group, we then examined the occurrence

of flagged volumes by subjects, scanning session, image weighting,

and processing parameters across the MASSIVE and the MSC data

sets (see Section 3.1).

2.3.2 | Impact of image registration

Based on the above analysis, we tested the effect of image registration

and the ensuing interpolation on the fractal analysis results. In the

MASSIVE data set, images were originally registered to the first T1 vol-

ume, and thus not all images were subject to the same transformation tar-

gets. To assess the impact of registration, we therefore reregistered all

images to the mean of the FLAIR images, also included in the MASSIVE

data set but independent of the presented analyses, and extended our

analyses to the thus reregistered data. For further examination, we

F IGURE 4 Exemplary identification of a within-group deviation. The data presented here belongs to the high-resolution T1 GM_pve images
in the MASSIVE data set. If the fractal dimension of an image was identified to deviate from the remaining analysis group according to the chosen
deviation criterion, the corresponding volume was flagged (indicated here by #). In this case, the FD value belonging to the first scan was flagged,
and its deviation from the remaining samples is visible from Panel (a). Note that in Panel (b), the SD of the jackknife mean without this flagged
volume is notably smaller, although this difference did not reach significance level in multivariate variance comparison. Panel (c) shows the
corresponding quantile–quantile plot. Although the flagged FD only deviates by about .05 from the other FD estimates, normality assessment
suggests that assuming an underlying Gaussian distribution is not recommendable. Clearly, however, the remaining samples tightly follow the
normality reference and discarding the flagged FD indeed restores the acceptance of composite normality. Furthermore, nonparametric
comparison between the distributions with and without the flagged volume yielded insignificant results, exemplified here in Panel (d). CI,
confidence interval; PDF, probability density function; SD, standard deviation [Color figure can be viewed at wileyonlinelibrary.com]

KROHN ET AL. 3305

http://wileyonlinelibrary.com


moreover reregistered the MSC data using FSL's MNI152 structural tem-

plate.We then compared themean FDs in the 32 analysis groups between

the respective first volume registration and the reregistered data non-

parametrically by a series of Wilcoxon rank sum tests, with Bonferroni–

Holm correction for multiple comparisons. Effect sizes for these compari-

sons are calculated based on the z-value of the test statistic as

rzval = zffiffiffiffiffiffiffiffiffiffi
n1 + n2

p , where n1 and n2 are the compared sample sizes (i.e.,

number of scans for the two respective registrations, see Fritz et al.

(2012)). Moreover, we computed correlation matrices to examine if

there were associations between the 32 image analysis groups and

whether image registration had an effect on potential associations.

2.3.3 | FD and structural similarity

Furthermore, we sought to investigate the relationship between struc-

tural complexity and structural similarity. The motivation behind this

was to examine if differences in FD essentially just track differences

in structure, that is, if two MRI volumes differ little in their fractal

dimensionality simply if they are very similar to one another. In this

context, we computed the structural similarity index (SSIM) between

two given 3D volumes and related it to the difference of their respec-

tive FDs. The SSIM is a well-known reference metric of structural sim-

ilarity between two images based on luminance, contrast, and

structure, and is commonly applied in signal processing and image

quality assessment (Wang, Bovik, Sheikh, & Simoncelli, 2004). The

SSIM aims at evaluating structural differences between two complex-

structured signals and is computed as the result of comparing local

intensity patterns over image windows. Importantly, it satisfies a num-

ber of useful properties for our comparisons: first, it represents a sin-

gle scalar measure of the overall image comparison. Moreover, the

SSIM is bounded by [−1, 1], with the unique maximum SSIM (x, y) = 1

if and only if the two images x and y to be compared are identical. Fur-

thermore, the SSIM exhibits symmetry, such that SSIM (x, y) = SSIM

(y, x) holds for any two images x and y. For further details, please refer

to Wang et al. (2004), �stergaard, Derpich, and Channappayya (2011),

and Brunet, Vrscay, and Wang (2012). We here computed the SSIM in

every possible pair-wise comparison of two volumes within an analy-

sis group (i.e., volume 1 vs. 2, volume 1 vs. 3, and so on) in both the

MASSIVE and the MSC data set. The number of total unique compari-

sons between any two out of n input volumes is given by the binomial

coefficient m = n
2

� �
, and we compute

SSIM xi ,xj
� �

, with i, j=1,…,n and i 6¼ j: ð4Þ

For each of these comparisons, we calculate the difference of the

corresponding FD values of volume xi and xj, that is,

ΔFDi;j = j FD xið Þ−FD xj
� � j ð5Þ

where we take the absolute difference to match the symmetry of the

SSIM. In theMASSIVE data set, there are n = 10 repeated scans of a single

subject. For each of the 32 analysis groups, we thus obtain m = 45 ΔFD/

SSIM pairs, each belonging to one particular comparison of two 3D

volumes. In the MSC data set, there are n = 4 repeated scans in each of

the 10 subjects, yielding m = 6 between-volumes comparisons in each

analysis group. While the within-subject comparisons were thus consider-

ably more limited, the MSC data set allowed us to extend the above pro-

cedure to across-subject analyses. To this end, we computed all possible

session-wise comparisons between subject scans (i.e., session 1 subject

1 vs. session 1 subject 2, …, session 4 subject 9 vs. session 4 subject 10),

yielding m = 4 × 10
2

� �
=180 comparisons for each of the 32 analysis

groups. As plotting ΔFD over SSIM was suggestive of data clusters in

some cases, we carried out a group-wise k-means clustering analysis. To

this end, k was chosen agnostically based on range-constrained silhouette

optimization (see Appendix for an example and further details), yielding

k=2 for most analysis groups, followed by k=3 in some instances. The

clustering algorithm was run on the corresponding ΔFD/SSIM pairs with

10 replicates to avoid convergence on nonglobal minima due to random

initial conditions. Clustering quality was generally very good across the data

sets as indicated by high average silhouette values and reasonably balanced

cluster sizes. We furthermore examined whether there were significant

associations between ΔFD and SSIM by means of nonparametric Kendall's

τ correlation, and performed a linear regression for all significant dependen-

cies. In order to test if differences in FD induced by varying interpolation

(see above) were related to structural similarity, and if the relationship

betweenΔFD and SSIMwas altered due to different image registration, we

conducted the above analysis in both first volume registration and the

reregistered data sets with identical optimization settings and comparedΔFD,

SSIM, and k-means clustering results between the different registrations.

2.3.4 | FD by image characteristics

Finally, we assessed differences of the fractal estimates across analy-

sis groups as a function of image characteristics and analysis parame-

ters. To this end, we compared the corresponding mean FDs by

computing an analysis of variance (ANOVA), which invariably yielded

significant differences in FDs across groups, and applied a post-hoc

Tukey–Kramer test (Hayter, 1984) to investigate significant FD differ-

ences between analysis groups in pair-wise parameter-dependent

comparisons. For all statistical tests employed in the present work, we

defined a minimum significance level of α = 0.05.

Image processing was implemented with a set of Unix shell scripts.

Skeletonization, spatial optimization studies, fractality estimation, and

data analysis were carried out based on custom-written Matlab code

(The MathWorks, Inc., Natick, MA). For the interested reader wishing

to retrace our analyses, all files are available from the Open Science

Framework (http://osf.io/3mtqx).

3 | RESULTS

3.1 | Deviation analysis

The procedure detailed in Section 2.3.1 was applied to all 32 analysis

groups across the MASSIVE and MSC data sets, the result of which is

shown in Figure 5. The overall robustness of the FD against repeated-
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sampling deviations was very high across both data sets, with over 95%

unflagged volumes. For the detected flags, our analyses uniquely identified

a single scanning session that was responsible for the majority of devia-

tions in both the MASSIVE and the MSC data sets in original registration,

in this case volume 1 (Figure 5a and 5c). As the first T1 volume served as

the respective subject-wise registration target, this finding motivated fur-

ther examination in the reregistered data sets (see Section 2.3.2). Interest-

ingly, reregistration consistently abolished the clustering of deviations in

the first volume in both the MASSIVE and the MSC data (Figure 5b and

5d, respectively). Furthermore, reregistration further reduced the absolute

number of deviations in both data sets by around 1.5–2%. Despite this

general reduction, reregistration also induced a few previously absent

deviations in both data sets (e.g., volume 6 in the MASSIVE data; subject

7, volume 4, in the MSC data). In terms of image parameters, high resolu-

tion images were more susceptible to the effect of registration (with a

slight predilection for T1WI), and skeleton models were more prone to

deviations than unskeletonized images, while deviations were rather bal-

anced between segmentation procedure and tissue type.

3.2 | Impact of image registration on FD profile

3.2.1 | Absolute FD estimates

For further characterization of registration effects, we compared the FD

profiles across all analysis groups between the two respective registra-

tions for both data sets. As summarized in Table 1, image registration

had a significant impact on the mean FD estimates for most analysis

groups in T2WI for the MASSIVE data set, while the comparisons in

T1WI were less often significant. For the MSC data set, all comparisons

in the high resolution category for both T1WI and T2WI yielded signifi-

cant results, while differences were less pronounced for low resolution

volumes, especially in T1WI. Notably, in both registrations and both data

sets, SDs for skeleton models across most analysis groups were up to

one order of magnitude higher as compared to their unskeletonized

counterparts (e.g., T1 low-resolution WM estimates). Moreover, data

scatter was generally higher in the MSC data (across-subject means) as

compared to the MASSIVE data (within-subject means). Regarding the

direction of the effects, all significant registration-induced changes of the

skeleton models in the MASSIVE data resulted in a decreased mean FD,

that is, reregistration uniformly reduced FD values in image skeletons. In

contrast, the opposite pattern occurred in all but one of the

unskeletonized image groups, with reregistration yielding higher mean

FD estimates. Across the MSC data set, on the other hand, reregistration

invariably resulted in decreased FD estimates for both T1 and T2 high

resolution volumes, while mean FDs of low resolution images were gen-

erally increased. While registration-induced changes were thus quite

consistent within each data set, the absolute mean values and the direc-

tion of registration-induced changes did not generalize from one data set

to another.

3.2.2 | Sample distributions

We furthermore assessed the sample distributions of the repeated-

acquisition FD estimates in response to image registration across the

two data sets. Specifically, Table 1 summarizes the outcomes of com-

posite normality assessment (hn) both within-subject (MASSIVE and

MSC data) and across-subject samples (MSC data). Here, asterisks

indicate the conversion cases, where composite normality was first

refuted but acceptable upon removal of the within-group deviations

as identified by the deviation analysis from Section 2.3.1 (see Figures 4

and 5). For the MSC data, the test decision refers to the sample across

all subject volumes, with subscripts indicating how many within-

(a) (b)

(c) (d)

(e) (f)

F IGURE 5 Deviation analysis across the MASSIVE and MSC data
sets. Panels (a) and (b) depict sampling deviations by volume and
analysis group in the MASSIVE data set in the original first volume
registration and after reregistration to the mean FLAIR images. Panels
(c) and (d) relate the results by volumes and subjects in the Midnight
Scan Club (MSC) data in first volume and MNI registration. Note that
only Subjects 8 and 6 underwent acquisition runs 5 and
6, respectively (indicated by * and #), while all other subjects had four
acquisition runs. Panels (e) and (f) resolve the MSC deviations by
analysis groups in the two registrations. The original registration
resulted in a deviation cluster around the registration target in both
the MASSIVE and the MSC data. This effect was abolished by
reregistration in both data sets. High-resolution images were more
susceptible to the registration effect, and skeleton models were more
prone to deviations than unskeletonized images. bin, binary tissue

segmentation; GM, gray matter; pve, partial volume estimates; Skel,
skeleton model; WM, white matter [Color figure can be viewed at
wileyonlinelibrary.com]
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TABLE 1 Impact of image registration on fractal dimension profile

MASSIVE data set MSC data set

First volume FLAIR First volume MNI

Analysis group Mean FD ± SD hn Mean FD ± SD hn pcorr rzval Mean FD ± SD hn Mean FD ± SD hn pcorr rzval

T1 high

GM_pve 2.6394 ± 0.0158 n* 2.6489 ± 0.0098 y ns −0.28 2.6734 ± 0.0229 n1/1 2.6393 ± 0.0104 n0/1 1.9e−11 0.78

GM_bin 2.6025 ± 0.0130 n* 2.6002 ± 0.0025 y ns 0.53 2.6187 ± 0.0427 n3/3 2.5530 ± 0.0234 n1/2 5.1e−13 0.84

GM_Skel_pve 2.2805 ± 0.0762 n 2.2201 ± 0.0439 n ns 0.50 2.2744 ± 0.0377 n4/4
* 2.1185 ± 0.0919 n4/5 1.2e−12 0.82

GM_Skel_bin 2.3146 ± 0.0536 n* 2.3437 ± 0.0064 y ns −0.55 2.3445 ± 0.0951 n9/9 2.1761 ± 0.0591 y2/2 2.1e−11 0.78

WM_pve 2.5685 ± 0.0103 n* 2.5426 ± 0.0028 y 0.0330 0.68 2.6459 ± 0.0268 n0/1 2.6093 ± 0.0125 y0/0 6.7e−11 0.76

WM_bin 2.4917 ± 0.0031 y 2.4878 ± 0.0089 n ns 0.08 2.5833 ± 0.0429 n1/1 2.5391 ± 0.0122 y1/2 2.0e−09 0.70

WM_Skel_pve 2.2423 ± 0.0311 n* 2.0673 ± 0.0216 y 0.0058 0.84 2.1899 ± 0.0468 n2/2 1.9107 ± 0.0504 y0/0 9.9e−14 0.86

WM_Skel_bin 2.2078 ± 0.0780 y 2.1530 ± 0.0171 y ns 0.62 2.2822 ± 0.0758 n2/2 1.9932 ± 0.0888 n0/2 9.9e−14 0.86

T1 low

GM_pve 2.5265 ± 0.0080 y 2.5374 ± 0.0066 y ns −0.55 2.5280 ± 0.0888 n 0/1 2.5070 ± 0.0452 n2/2 ns 0.17

GM_bin 2.3901 ± 0.0152 y 2.4539 ± 0.0039 y 0.0058 −0.84 2.3773 ± 0.1595 n1/2 2.4216 ± 0.0324 n0/0 ns −0.07

GM_Skel_pve 2.2087 ± 0.0073 y 1.9864 ± 0.0266 n* 0.0057 0.84 2.0784 ± 0.1697 n2/2 2.2745 ± 0.1090 n0/3 6.5e−07 −0.59

GM_Skel_bin 2.2367 ± 0.0114 n* 2.2371 ± 0.0080 y ns −0.14 2.1512 ± 0.0957 n2/2 2.2587 ± 0.0925 n2/3 .0009 −0.43

WM_pve 2.4137 ± 0.0028 y 2.4103 ± 0.0032 y ns 0.46 2.4444 ± 0.1949 n1/3 2.5162 ± 0.0308 n2/2
* ns 0.03

WM_bin 2.2861 ± 0.0119 n 2.2795 ± 0.0045 y ns 0.33 2.3574 ± 0.1661 n2/5 2.4178 ± 0.0161 y1/1 ns −0.06

WM_Skel_pve 1.8732 ± 0.0350 y 1.7491 ± 0.0474 y 0.0055 0.84 1.8443 ± 0.1480 n2/3 1.7583 ± 0.1639 n2/2 .0438 0.30

WM_Skel_bin 2.0148 ± 0.0219 y 1.8672 ± 0.0974 n 0.0053 0.84 1.9449 ± 0.1010 n0/0 1.9427 ± 0.1093 n1/1 ns 0.03

T2 high

GM_pve 2.6327 ± 0.0017 y 2.6352 ± 0.0018 y ns −0.57 2.6650 ± 0.0365 n0/1 2.6362 ± 0.0072 y0/0 8.9e−07 0.59

GM_bin 2.5263 ± 0.0043 y 2.5539 ± 0.0043 y 0.0051 −0.84 2.6268 ± 0.0418 n1/2 2.5665 ± 0.0211 n1/1
* 6.8e−12 0.80

GM_Skel_pve 2.2925 ± 0.0142 n 2.2419 ± 0.0149 y 0.0042 0.82 2.2700 ± 0.0509 n1/2
* 2.1373 ± 0.0589 n3/4 1.9e−11 0.78

GM_Skel_bin 2.3437 ± 0.0229 y 2.2741 ± 0.0311 n 0.0161 0.74 2.3969 ± 0.0699 n2/2 2.3037 ± 0.0443 n0/1 7.0e−09 0.68

WM_pve 2.6699 ± 0.0024 y 2.6727 ± 0.0036 y ns −0.40 2.7047 ± 0.0333 n0/1 2.6559 ± 0.0088 y0/1 2.0e−13 0.85

WM_bin 2.5284 ± 0.0080 n* 2.5773 ± 0.0019 y 0.0049 −0.84 2.6455 ± 0.0471 n3/3 2.5422 ± 0.0237 n2/2 5.1e−13 0.84

WM_Skel_pve 2.3031 ± 0.0319 y 2.2771 ± 0.0158 y ns 0.48 2.2768 ± 0.0509 y3/3 2.1982 ± 0.0574 n3/3 1.5e−08 0.67

WM_Skel_bin 2.3808 ± 0.0130 n* 2.3340 ± 0.0056 y 0.0047 0.84 2.4624 ± 0.0900 n2/3 2.2730 ± 0.0332 y1/1 7.0e−12 0.80

T2 low

GM_pve 2.4427 ± 0.0014 y 2.4696 ± 0.0120 n* 0.0046 −0.84 2.4760 ± 0.1729 n3/4 2.5023 ± 0.0159 n2/3 ns 0.14

GM_bin 2.4306 ± 0.0010 y 2.4597 ± 0.0046 y 0.0044 −0.84 2.3153 ± 0.2169 n3/4 2.4318 ± 0.0365 n3/3 .0066 −0.37

GM_Skel_pve 2.1620 ± 0.0182 n* 1.8032 ± 0.0658 n* 0.0042 0.84 2.0175 ± 0.0837 n2/2 2.2725 ± 0.1170 n2/2 2.2e−10 −0.74

GM_Skel_bin 2.3035 ± 0.0036 y 2.1593 ± 0.0076 y 0.0040 0.84 2.0624 ± 0.1015 n1/3 2.2635 ± 0.0800 n2/2 5.0e−12 −0.80

WM_pve 2.5655 ± 0.0048 y 2.5595 ± 0.0049 y ns 0.53 2.4888 ± 0.2084 n1/3 2.5485 ± 0.0147 n1/1
* ns −0.01

WM_bin 2.4405 ± 0.0011 y 2.4610 ± 0.0052 y 0.0038 −0.84 2.3456 ± 0.2081 n0/2 2.4651 ± 0.0269 n0/0 .0029 −0.40

WM_Skel_pve 2.1466 ± 0.0146 n* 1.7757 ± 0.0562 n* 0.0037 0.84 2.0379 ± 0.1207 n1/1 2.3721 ± 0.1025 n0/2 6.7e−12 −0.80

WM_Skel_bin 2.3265 ± 0.0034 y 2.0101 ± 0.0021 y 0.0035 0.84 2.1418 ± 0.1276 n3/4 2.3559 ± 0.0683 n1/1 1.0e−13 −0.86

The table summarizes the mean fractal dimension values by image group for the first volume registration and the reregistered data in both the

MASSIVE and the Midnight Scan Club (MSC) data sets. Assessment of within-group composite normality (hn) is indicated by “y” (yes) and “n” (no).
Asterisks indicate those groups in which composite normality was first violated but restored after removal of a within-group deviation (see Section

3.1). Mean fractal dimensions between registrations were compared nonparametrically by Wilcoxon signed rank tests with Bonferroni–
Holm-adjustment for multiple comparisons. Effect sizes are calculated based on the z value of the test statistic as rzval (see Section 2.3.2). bin, binary

segmentation; FD, fractal dimension; GM, gray matter; ns, not significant; pcorr, adjusted p-value; pve, partial volume estimates; SD, standard

deviation; Skel, skeleton model; WM, white matter.
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subject normality assumptions were refuted without and respectively

with these flagged volumes (a maximum of 10 for each analysis group

based on the 10 subjects). As a general result, the normality assump-

tion in within-subject measurements was more often refuted in first

volume as compared to reregistration, although this reached signifi-

cance level only for the MSC data (MASSIVE: 40.6% in first volume

registration vs. 25% in FLAIR registration, χ2 = 1.1, n = 32, p = .29;

MSC: 25.3% in first volume registration, 17.2% in MNI registration,

χ2 = 5.8, n = 320, p = .01). Furthermore, the repeated-sampling devia-

tions constituted a main reason for a priori rejection of composite nor-

mality in within-subject sampling: in the MASSIVE data set, 10/13

normality rejections were restored by omitting deviations in first vol-

ume registration, and 4/8 in the reregistered data set. Conversion

rates were 28.4% in first volume registration and 29.1% in MNI regis-

tration for the MSC data set. Considering the conversion cases, a total

of 28/32 analysis groups adhered to composite normality in the

reregistered MASSIVE data (87.5%), with similar results for the

within-subject distributions in the MNI-registered MSC data set

(281/320 within-subject measurements, 87.8%). While assuming an

underlying normal distribution for within-subject sampling was hence

acceptable for most analysis groups across both data sets, this did not

transfer to the across-subject distributions in the MSC data set. Here,

normality was refuted in the vast majority of analysis groups in first

volume registration, and this was virtually unaltered by omitting

within-subject deviations. MNI-registration yielded adherence to com-

posite normality in 25% of the analysis groups, without any obvious

distribution across image categories, and this was again practically

unaffected by within-subject deviations. Closer examination of the

sample distributions suggested that reregistration had a discernible

regularization effect on the across-subject distributions in some analy-

sis groups, but not in others, as exemplified in Figure 6 for high-

resolution gray matter partial volume estimates in T1WI and T2WI.

3.2.3 | Across-group associations

Based on the complex impact of image registration on the FD estimates

in both data sets, we furthermore investigated whether there were any

between-group associations across the 32 analysis groups and whether

image registration had an impact on these associations. Figure 7 reports

the corresponding results for the MSC data set (results for the MASSIVE

data set were similar but limited to 10 estimates in each group and only

reflective of within-subject associations). First volume registration

featured a large number of systematic, strong, bidirectional, and highly

significant between-group correlations, reflected in a “checkerboard”

pattern of the correlation matrix. Interestingly, reregistration to MNI

space resulted in a pronounced overall across-group decorrelation,

reducing both the strength and the amount of associations between

image analysis groups, while an across-group association cluster was

seen for some analysis groups in the T2 low-resolution category.

3.3 | Optimal k-ranges

We subsequently analyzed the optimization results across the two

data sets in terms of analysis parameters and image registration.

F IGURE 6 Exemplary across-subject distributions of fractal dimension estimates in the MSC data set. The figure reports the raw fractal
dimension estimates by subjects. Panels (a) and (b) display exemplary sample distributions with kernel density estimations for high-resolution gray
matter partial volume estimates in T1WI and T2WI, respectively. While MNI registration of the T2WI resulted in a regularization of the across-
subject sample (and composite normality was acceptable), this was not the case for T1WI. GM, gray matter; pve, partial volume estimates [Color
figure can be viewed at wileyonlinelibrary.com]
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Specifically, for each individual fractality estimation, we tracked which

spatial scale interval (i.e., which range of k in Equation (2)) was

selected as the optimal range for that particular estimation according

to the procedure in Section 2.2. Based on Equation (3), there were

m = 21 distinct spatial scale intervals, ranging from k = 0, ..., 3 to k = 0,

..., 8. Figure 8 visualizes the frequency of the optimal k-ranges as esti-

mated from the data. Panels (a) and (b) display the optimization results

across analysis groups for the MASSIVE data set in first volume and

FLAIR registration, respectively. As a general result, optimal k-ranges

were highly selective in that they (a) displayed a clear preference for a

subset of all possible spatial scales (i.e., were far from a uniform distri-

bution), (b) differed markedly over the various analysis groups, and

(c) showed a systematic tendency toward lower-cardinality over

higher-cardinality scale intervals. Furthermore, the k-ranges in

Figure 8 are ordered from left to right by interval length and lower to

higher k-values within each of these groups (i.e., from k = 0, ..., 3 to

F IGURE 7 Across-group correlations in MSC data set. Panels (a) and (b) depict the correlation coefficients across the 32 image analysis
groups in the Midnight Scan Club (MSC) data set in first volume and MNI registration, respectively. Panels (c) and (d) show the corresponding p-
values below significance threshold after Bonferroni–Holm adjustment. While first volume registration induced strong systematic correlations
between analysis groups, both the amount and the strength of these associations were markedly attenuated by reregistration. bin: binary tissue
segmentation; pve: partial volume estimates; Skel: skeleton model [Color figure can be viewed at wileyonlinelibrary.com]
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k = 5, ..., 8 for a cardinality of 4, from k = 0, ..., 4 to k = 4, ..., 8 for a

cardinality of 5, and so on). From this it becomes apparent that opti-

mal spatial scales showed a further tendency toward lower k-values

(i.e., smaller box sizes) for a given interval length. For instance, consid-

ering a cardinality of 4, all estimations in the reregistered data set

yielded optimal scales from k = 0, ..., 3 to k = 3, ..., 6, while the larger

box edge sizes of k = 4, ..., 7 and k = 5, ..., 8 were never selected as

optimal (Figure 8b). Interestingly, scale selectivity in the MASSIVE

data was even further increased by reregistration to the FLAIR

images (in Figure 8b, 11 k-ranges contained all optimization results,

while the remaining 10 were never chosen as the optimal spatial

scales). Optimization outcome furthermore differed by image analy-

sis groups. While there was no obvious distribution of optimal

scales by weighting, resolution, segmentation procedure, or tissue

type, a discernible pattern emerged as a function of skeletonization,

on which we thus focus the visual comparison (with unskeletonized

volumes in colder colors, and skeleton models in warmer tones).

Optimal scales for image skeletons were systematically shifted to

the right of unskeletonized images, yielding that intervals for skele-

ton models were generally of the same length but over higher

F IGURE 8 Optimal k-ranges in MASSIVE and MSC data sets. Panels (a) and (b) display the optimal spatial scales across all fractal dimension
estimations in the MASSIVE data set for first volume and FLAIR registration. Panel (c) quantifies how many of the 10 volumes in each image
analysis group yielded the same respective optimal k-ranges as a measure of scale dispersion. Reregistration shifted this distribution to the right,
reflecting increased consistency of repeated optimization results. Panels (d) and (e) show the absolute frequencies of optimal spatial scales in the
MSC data set for first volume and MNI registration (single bars represent subjects and stacks represent image analysis groups for each subject).
There was notable similarity to the MASSIVE data in scale selectivity and distribution by image analysis groups, especially regarding skeleton
models versus unskeletonized images. Panel (f) represents the consistency distribution over subjects in the MSC data. Note that only subjects
8 and 6 underwent acquisition runs 5 and 6, respectively (indicated by * and #), while all other subjects had four acquisition runs, and thus
4 represents the maximum repeated-optimization consistency for those subjects. bin, binary tissue segmentation; GM, gray matter; pve, partial
volume estimates; Skel, skeleton model; WM, white matter [Color figure can be viewed at wileyonlinelibrary.com]
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k-values. Furthermore, we examined how consistently a particular

k-range was selected in repeated estimations within the same

image analysis group. To this end, we tracked how many volumes in

each analysis group yielded the same optimal scale, regardless of

the particular k-range. Panel (c) visualizes this scale dispersion for

the MASSIVE data set. For some analysis groups in first volume

registration, estimation yielded the same optimal scales for all

10 input volumes, while there were nearly as many cases in which a

k-range was only chosen once in a particular analysis group. Inter-

estingly, reregistration shifted this distribution to the right, indicat-

ing that more analysis groups now consistently yielded the same

optimization outcome over all 10 input volumes. The same analyses

were carried out over the MSC data set, summarized in Panels (d)–

(f ). Results closely mirrored the above findings in the MASSIVE

data. Optimal k-ranges showed highly similar convergence on

lower-cardinality intervals as well as lower k-values for a given

interval length, with high consistency across subjects. Moreover,

the same distribution of skeleton models and unskeletonized images

was observed, and this pattern as well as scale selectivity was equiva-

lently augmented by reregistration (Figure 8e). Furthermore, the scale

dispersion distribution in Panel (f) was also right-shifted in the

reregistered data set, indicating increased optimization consistency.

This effect, however, was more pronounced in some subjects than in

others, and absolute counts differed moderately among subjects,

suggesting that despite high qualitative consistency, there was also

some between-subject variability in the numerical frequency of indi-

vidual optimization results.

3.4 | FD and structural similarity

The procedure in Section 2.3.3 revealed an interesting relationship

between the FD and structural similarity. Generally, SSIM values were

found in the range of 0.7 and 1 for both data sets, indicating a high

degree of similarity between any two MRI volumes across all image

analysis groups. With regard to ΔFD/SSIM pairs in within-subject

comparisons, some cases were indicative of data clustering, and this

was related to image registration. Figures 9 and 10 show the results

for the exemplary group of T1 high-resolution images in the MASSIVE

data set. In first volume registration, k-means clustering showed that

the data was clearly separated into fractality-similarity clusters (Figure

9a) across all analysis groups. Notably, this clustering was mainly

driven by comparisons involving the first volume, i.e. the registration tar-

get (indexed by 0, see caption). Consequently, a number of across-

cluster correlations were found in various analysis groups, suggesting a

systematic negative association between differences in FD and struc-

tural similarity (Figure 9b). However, this relationship was limited to

clusters that were highly separated in both ΔFD and SSIM (see centroid

location) and that were most clearly induced by comparisons involving

the registration target. Indeed, when the same procedure was applied to

high-resolution T1 images in the reregistered MASSIVE data, these

associations disappeared (Figure 10). Here, ΔFD/SSIM clusters as found

by k-means were generally less separated, mainly differed only by ΔFD

in centroid location, and showed no systematic relationship between

cluster assignment and which of the MRI volumes entered the

comparison (Figure 10a). Similarly, the previous associations between

ΔFD and SSIM were strongly attenuated, and all but one vanished alto-

gether (Figure 10b). In fact, no general systematic relationship between

FDs and structural similarity was observed in the reregistered MASSIVE

data set. We then applied the same within-subject analysis to the MSC

data. While we observed similar target-induced clustering and cluster-

driven ΔFD/SSIM associations in first volume registration as well as the

attenuation of these effects in the reregistered images (see Appendix for

an example), within-subject analyses in theMSC data set were restricted to

only a few possible between-volumes comparisons due to the lower num-

ber of per-subject scans (see Equation (4)). Nonetheless, the MSC data

enabled us to compute extensive across-subject comparisons, as detailed

in Section 2.3.3. Figure 11 summarizes the results for the exemplary case

of high-resolution T1 images (but similar results were found for T2WI).

k-means clustering yielded two to three ΔFD/SSIM clusters for each image

analysis group, with low between-cluster separation and centroid locations

driven predominantly by differences in ΔFD or SSIM but not both

(Figure 11a). Furthermore, no systematic relationship between ΔFD and

SSIMwas observed for across-subjects comparisons (Figure 11b).

Further evidence against a systematic fractality-similarity associa-

tion comes from between-registration comparisons of ΔFD and SSIM

(see Appendix). While SSIM values in the MASSIVE data set were

significantly different between first volume registration and the

reregistered data across all analysis groups (p < .001 for all compari-

sons, Bonferroni–Holm-adjusted), there was no significant difference

in ΔFD values in the majority of the analysis groups (20/32 confirmed

null hypotheses, see Table A1 in Appendix). This finding was corrobo-

rated and indeed more pronounced in the MSC data set, in which

SSIM values for all analysis groups also showed a highly significant

between-registration difference, while there were essentially no sig-

nificant differences in ΔFD values between the two image registra-

tions (30/32 confirmed null hypotheses, see Table A2).

3.5 | FD by image characteristics

Finally, we compare the mean FD estimates by image weighting and

resolution in a parameter-dependent fashion. Figure 12 reports the

results for the MSC data set (but results for the MASSIVE data were

highly similar, see Figure A4 in Appendix). As a general result, FD esti-

mates in both image weighting were sampled in the expected range,

compatible with previous reports, and T1WI and T2WI were affected

by image registration, binarization, skeletonization, and spatial resolu-

tion in a highly similar manner. While the results from Section 3.2 high-

light that registration had a significant impact on the absolute FD

values, the influence of sequence weighting, tissue type, and image

processing parameters within a given set of input images was essen-

tially unaltered by reregistration. As such, binary tissue segmentation

consistently caused a moderate reduction of FD values in the

unskeletonized volumes across both registrations, while it led to a

slight increase or no significant change in the skeleton models for both

T1WI and T2WI, gray matter as well as white matter segmentations

and regardless of spatial resolution. Furthermore, skeleton models

invariably resulted in significantly decreased FD values across all
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analysis groups and in both image registrations. Another interesting

pattern was observed with regard to tissue type: while gray matter and

white matter FDs showed no significant differences for most compari-

sons in unskeletonized analysis groups, skeleton models generally

yielded significantly higher gray matter FDs in T1WI as well as

slightly but significantly higher white matter FDs for most compari-

sons in T2WI. Moreover, lower spatial resolution invariably resulted

in significantly decreased FD values for all unskeletonized image groups

in both the MASSIVE and the MSC data sets, regardless of image regis-

tration (see Figure A5). The same effect was observed in most image

skeleton groups across both data sets, with a few exceptions in the MNI-

registered MSC data. Furthermore, comparing the SDs in Panels (a) and

(b) of Figure 12, there was a marked reduction in between-subject

variability by reregistration to MNI space for all unskeletonized

analysis groups, while within- and between-subject variability were

not equivalently reduced in skeleton models (see also by-subject

averages in Figure A6).

4 | DISCUSSION

The current study presents a systematic and in-depth evaluation of

the FD as a marker of structural brain complexity in human brain MRI.

To this end, we first consider some computational aspects regarding

FD estimation, and we report detailed empirical analyses of two

recently published open-access neuroimaging data sets.

As detailed above, the FD estimates obtained from box-counting

numerically depend on the spatial scale interval over which the linear

regression of the log-transformed data is computed, highlighting the

F IGURE 9 Fractal dimension differences and structural similarity in theMASSIVE high-resolution T1 images (first volume registration). Panel (a)
displays the k-means clustering results within each analysis group. For all possible 45 comparisons, the structural similarity index (SSIM) between two input
volumeswas computed and related to the difference in the corresponding fractal dimensions (ΔFD). Numbers indicatewhich of the 10 volumeswere
compared, with indices running from0 to 9 to avoid triple digits. For first volume registration,ΔFD/SSIM pairs showed strong clustering, and therewas a
systematic effect of comparisons involving the first volume (the original registration target, indexed by 0) formost image analysis groups. In these groups,
clusters were driven by differences in bothΔFD and SSIM, and this induced strong negative associations between differences in fractal dimension and
structural similarity shown in Panel (b). This effect, however, was attenuated by reregistration (see Figure 10 below).ΔFD, absolute difference in fractal
dimension between two compared volumes; bin, binary tissue segmentation; GM, graymatter; pve, partial volume estimates; Skel, skeletonmodel; SSIM,
structural similarity index between two compared volumes;WM,whitematter [Color figure can be viewed at wileyonlinelibrary.com]
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question which scale interval will most adequately capture the underly-

ing FD in the estimation process. We here applied an algorithmic scale

optimization procedure to address this issue and examined the perfor-

mance of optimized versus non-optimized estimation in simulation stud-

ies of random Cantor sets, whose FD values were known. The outlined

procedure improved estimation accuracy against both agnostic (random)

and specific (fixed) non-optimal k-ranges, although the magnitude of this

improvement depended on the particular non-optimal k-range as well as

the underlying FD values. A further advantage of our procedure con-

cerns the increased flexibility toward different object types. The simu-

lated random Cantor sets only differed from each other over one

degree of freedom (the retainment probability), while empirical objects

such as brain MRI segmentations may differ over many degrees of free-

dom (e.g., sequence, spatial resolution, tissue type, and so on). As such, a

particular spatial scale interval that yields good estimation accuracy for

one type of object does not necessarily fare equally well in another type

of object. Indeed, our procedure allowed us to analyze explicitly which

optimal spatial scales were selected from the empirical data, and optimi-

zation results from Section 3.3 show that optimal k-ranges were selec-

tive in terms of interval length, numerical k-values (i.e., box edge sizes)

and image analysis groups. With regard to the latter, an interesting pat-

tern emerged in function of skeletonization, with remarkably similar

optimization outcomes in the MASSIVE and the MSC data sets and high

consistency across repeated measurements and subjects. In conse-

quence, those spatial scales that were optimal for unskeletonized vol-

umes were not optimal for skeleton models and vice versa, such that no

single fixed k-range would accommodate both. In sum, we suggest that

the applied procedure provides improvement over using fixed spatial

scales because (a) it can estimate the underlying FD with improved

accuracy and because (b) it is agnostic toward different object types. In

similar spirit, group-wise scale selection based on correlation maximiza-

tion has been applied by Esteban et al. (2010). Nonetheless,

F IGURE 10 Fractal dimension differences and structural similarity in the MASSIVE high-resolution T1 images (reregistered to FLAIR). Similar
to Figure 9, Panel (a) represents the ΔFD/SSIM pairs and k-means clustering results for high-resolution T1 images after reregistration to FLAIR.
Here, ΔFD/SSIM clusters as found by k-means clustering were generally less separated, mainly differed only by ΔFD in centroid location, and
showed no systematic relationship between cluster assignment and which of the input volumes entered the comparison. Panel (b) shows that the
previous associations between ΔFD and SSIMwere strongly attenuated, and all but one vanished altogether. ΔFD, absolute difference in fractal
dimension between two compared volumes; bin: binary tissue segmentation; GM, gray matter; pve, partial volume estimates; Skel, skeleton model;
SSIM, structural similarity index between two compared volumes; WM, white matter [Color figure can be viewed at wileyonlinelibrary.com]
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generalization of optimal scales across distinct estimations may be lim-

ited by differences in populations, subjects, acquisition sessions, scan-

ning equipment, or estimation software, and thus a more data-driven

approach offers increasingly individualized optimization. In the current

study, we apply scale optimization to individual fractality estimations in

a completely automatic fashion.

With regard to the latter, scale selection here was based on maxi-

mizing the adjusted coefficient of determination, a commonly used mea-

sure of goodness of fit. While this perhaps represents the most natural

approach to the box-counting regression, other well-studied model

selection criteria exist (e.g., the Bayesian Information Criterion), and

future studies may examine if applying a different model selection crite-

rion yields further improvement of estimation accuracy. Of note, the dis-

advantage of using all spatial scales in the box-counting regression has

been pointed out from an analytical perspective (e.g., Gneiting et al.,

2012), and indeed avoidance of greater-length k-ranges was observed in

our empirical optimization outcomes. Finally, further study is also

warranted to examine if similar improvements can be achieved in other

methods of fractality estimation, such as dilation-based algorithms or

the sandbox method, which are thought to possess several advantages

over classical box-counting (Lopes & Betrouni, 2009; Madan &

Kensinger, 2016, 2017; Ruiz de Miras et al., 2017; Xue & Bogdan, 2017;

Yotter, Nenadic, Ziegler, Thompson, & Gaser, 2011).

Our empirical results suggested a high overall test–retest stability

of the FD estimates (~95%) across both the MASSIVE and the MSC

data sets. This is in accordance with a recent reliability study of brain

morphology estimates in two open-access data sets by Madan and

Kensinger (2017) who found that regional FD as computed by both

dilation and box-counting methods was generally very high and com-

parable to the reliability of gyrification indices, while it was in fact

superior to volumetric measures such as cortical thickness. Similarly,

Goñi et al. (2013) analyzed the fractal properties of the pial surface,

F IGURE 11 Fractal dimension differences and structural similarity in across-subjects comparisons in the MSC data set. Panel (a) visualizes
the results of across-subject comparisons for the high-resolution T1 images in MNI registration. Each subject had four scans, and all possible
between-subject comparisons were computed for each of those scanning sessions across all image analysis groups (where we omit the
comparison indices from above for visual coherence). Panel (b) relates the corresponding correlation results by image analysis groups. There was
no systematic ΔFD/SSIM data clustering in across-subject comparisons, and no systematic association between the fractal dimension and
structural similarity was found. bin, binary tissue segmentation; GM, gray matter; pve, partial volume estimates; Skel, skeleton model; SSIM,
structural similarity index between two compared volumes; WM, white matter [Color figure can be viewed at wileyonlinelibrary.com]

KROHN ET AL. 3315

http://wileyonlinelibrary.com


the gray matter/white matter boundary and the cortical ribbon and

white matter volumes in MRI data from different imaging centers and

found a high within-subject reproducibility with region-specific patterns

of individual variability. While there is thus converging evidence for the

robustness of fractal analysis in neuroimaging, these studies used

parcellation- and surface-based methods, and T2WI were not analyzed. In

this regard, the present study provides additional information as our eval-

uation was stratified into 32 distinct analysis groups based on sequence

F IGURE 12 Parameter-dependent comparison of the fractal dimension estimates in the MSC data set. Panels (a) and (b) visualize the
comparisons of the mean fractal dimension estimates over image analysis groups in first volume and MNI registration, respectively. Horizontal
bars reflect pair-wise significance levels. Comparisons for binary-segmented images (second bar in each subpanel) invariably yielded the same
significance levels as the partial volume estimates (first bar) so they were omitted here for visual coherence. Note that while image registration
had a profound impact on the absolute fractal dimension estimates, the relative impact of sequence weighting, spatial resolution, segmentation
procedure, tissue type, and skeletonization was essentially unaltered by registration. ns, not significant; *p < .05; **p < .01; ***p < .001; bin,
binary tissue segmentation; GM, gray matter; pve, partial volume estimates; Skel, skeleton model; WM, white matter [Color figure can be viewed
at wileyonlinelibrary.com]
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weighting, spatial resolution, segmentation procedure, tissue type, and

image complexity reduction by skeletonization, highlighting that the dif-

ferent image variables entail a differential susceptibility to repeated-

sampling deviations, observed here especially for high-resolution images

and skeleton models.

In this context, one important finding of the current study con-

cerns the complex and profound influence of image registration on

the FD estimates. In both data sets, image registration had a signifi-

cant impact on the absolute FD estimates, without obvious patterns

across the various analysis groups. Furthermore, we found that unbal-

anced registration targets can induce test–retest deviations in the FD

estimates that are reduced with reregistration, and this was consis-

tently observed in both data sets and across subjects in the MSC data.

These test–retest deviations were also found to render the assump-

tion of composite normality to be invalid in repeated within-subject

sampling. While a high proportion of analysis groups in balanced regis-

tration adhered to composite normality for repeated within-subject

measurements, this did not transfer to the across-subject sample dis-

tributions. Instead, here the assumption of normality was refuted in a

large majority of image analysis groups, and differences between anal-

ysis groups appeared to be driven by a variable across-subject sample

regularization in balanced registration. This finding (together with the

test-inherent limitation that accepting the null hypothesis does not

prove composite normality but rather indicates it should not be

refuted) suggests that it may not be advisable to assume the FD esti-

mates over various subjects to be sampled from an underlying normal

distribution. Measuring multiple subjects with only one or a few

respective samples is a very common empirical scenario, however. As

such, it appears that distributional assumptions in comparisons across

populations (e.g., patients vs. controls) may need to be relaxed, for

instance by opting for nonparametric methods, or ought to be

informed by explicit assessment.

Furthermore, image registration also had an interesting effect on

between-group ties within the data sets: while unbalanced registra-

tion induced strong associations among various analysis groups,

reregistration caused a pronounced overall decorrelation (indeed, the

presence of strong across-groups associations also seems biologically

implausible; for example, there is no principled reason to believe that

structural complexity of white matter will generally follow that of gray

matter). In summary, our results point to an important methodological

question: given the profound impact of image registration of the

fractality estimates, which registration scheme should be applied for

fractal analysis of structural brain MRI? While our results clearly

argue for balanced registration methods, it is at this point unclear if

subject-derived templates (that were found to increase between-scan

structural similarity, see below) carry any advantages over subject-

independent templates. In any case, as the former may not always be

feasible (e.g., in single-acquisition scenarios), registration to commonly

used subject-independent targets such as the MNI template may currently

be a reasonable solution, perhaps also in the interest of between-study

comparisons.

The latter point also concerns procedural standardization and

technical variance. Both the MASSIVE and the MSC data set provide

highly standardized images, while this may not always be the case in

empirical reality. Motion artifacts, for instance, can be expected to

obscure the utility of fractal analysis. Indeed, a recent study by Madan

(2018a) has shown that head motion can cause a significant decrease

of numerical FD estimates. Moreover, just as reference values for

blood tests may differ depending on the laboratory where they are

measured, fractal analysis may be influenced by the type of scanning

equipment, sequences, preprocessing software or estimation method,

as has been shown for other morphometric analyses (e.g., Wonderlick

et al., 2009; Madan & Kensinger, 2017; Duché et al., 2017). In this

context, it is noteworthy that the MASSIVE and the MSC data were

acquired on scanning systems from two different manufacturers.

While this provides some evidence that the results presented herein

(which were very similar across the two data sets) were fairly indepen-

dent of the scanning equipment, it may also constitute one reason

why the absolute numerical dimension estimates were not generally

transferable from one data set to another.

One finding with high consistency across the two data sets

regards the impact of binary segmentation on the FD estimates, which

caused a moderate FD reduction in unskeletonized images but no

change or slight increases in skeleton models. Of note, image skele-

tons invariably yielded decreased fractality estimates as compared to

their unskeletonized counterparts across both data sets. Since the

skeleton models can be thought of as a minimum complexity version

of the input volume, it seems rather plausible that the FD as a marker

of tissue complexity was consistently reduced by skeletonization. The

finding that SDs in skeleton models remained comparatively high

regardless of registration (whereas this was not the case for

unskeletonized images) further raises the interesting question if this

could be interpreted as a an indication of multifractal behavior (see

also below) or a shift or destabilization of localized fractal scaling over

a finite range of scales (cf., Xue & Bogdan, 2017), which could be

related to the right-shift of the optimization outcomes in Figure 8.

Moreover, we found that lower voxel resolution invariably resulted in

lower FD values in the unskeletonized images across both data sets.

A similar pattern was observed for skeletonized images, with a few

exceptions in the MNI-registered MSC data set. Intuitively, a measure

of structural brain complexity may be decreased in coarser spatial res-

olution because structural information is blunted by partial volume

effects.

Furthermore, the present study systematically evaluates the meth-

odological characteristics of fractality estimation in structural T2WI.

While T2-derived sequences have been used for fractal analysis in the

realm of functional MRI (albeit predominantly with respect to time

series analysis, see Bullmore et al., 2001; Eke et al., 2012; Foss,

Apkarian, & Chialvo, 2006; Lai et al., 2010; Thurner, Windischberger,

Moser, Walla, & Barth, 2003), T1WI have been the mainstay of struc-

tural neuroimaging studies employing fractal analysis. Nonetheless,

there has been some prior indication that T2-based fractal analysis is

both feasible and useful, especially in clinical assessment. For instance,

Iftekharuddin and colleagues successfully incorporated T2WI in

fractality-based multimodal feature extraction for tumor segmentation

(Iftekharuddin et al., 2009), and Takahashi et al. (2006) used
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multifractal analysis of deep white matter in T2WI to detect micro-

structural changes in early atherosclerotic alterations. Furthermore,

Di Ieva et al., (2014) characterized nidus angioarchitecture of brain

arteriovenous malformations with fractal analysis of T2WI. In the pre-

sent study, we found T2WI to yield remarkably robust results, both in

comparison to T1WI and in terms of stability over repeated measure-

ments. Furthermore, T1WI and T2WI were affected by binarization,

skeletonization, and spatial resolution in a similar manner, which may

encourage further research given the importance of T2WI in clinical

neuroradiological practice.

Finally, perhaps one of the most interesting findings of this study

concerns the relationship between structural complexity and struc-

tural similarity. These analyses were motivated both by registration-

induced changes and by the general question of whether differences

in FD essentially just reflect differences in structure per se. To our

knowledge, the present study is the first to investigate the relation-

ship between the FD and the SSIM in MRI.

Structural similarity as captured by the SSIM was generally very

high across the two data sets. In relating structural similarity to the

corresponding difference in complexity (ΔFD), we applied a k-means

clustering analysis, which provided a useful way to objectively assess

data clusters, especially since k was chosen automatically and the

same optimization settings were used for both image registrations

and across both data sets. Due to the method's unsupervised charac-

ter, it can be difficult to interpret qualitative differences in the cluster

features. However, based on the procedure in Section 2.3.3, each

ΔFD/SSIM pair represented a particular comparison of two MRI vol-

umes, enabling us to check for systematic effects of between-volumes

comparisons as cluster features, and comparing the cluster centroids

was useful in describing whether clustering was mostly driven by dif-

ferences in ΔFD, SSIM, or both. We furthermore conducted the ana-

lyses in two distinct ways: we first examined fractality-similarity

relationships over repeated acquisitions within subjects and then

extended the analyses to comparisons across subjects.

In line with the results of Section 3.2, we found considerable

within-subject clustering in various analysis groups for the MASSIVE

data set in first volume registration, with a systematic effect of com-

parisons involving the registration target that yielded pronounced

between-cluster separation in both ΔFD and SSIM and induced a num-

ber of strong fractality-similarity correlations. However, we interpret

these to be spurious correlations induced by unbalanced registration

because (a) they were mostly limited to analysis groups with strong

target-induced clustering, (b) the direction of the association was not

consistent across analysis groups, (c) structural similarity across all

analysis groups was significantly different in the reregistered data

set (as expected) while there was little difference in ΔFD, and

(d) systematic ΔFD/SSIM clustering and fractality-similarity associa-

tions essentially disappeared with reregistration. While we observed a

similar tendency in the MSC data set toward target-induced clustering

entailing across-cluster associations in first volume registration and

the attenuation thereof in MNI registration, within-subject compari-

sons were numerically limited by the lower number of per-subject

scans as compared to the MASSIVE data. However, the MSC data

allowed for extensive across-subject comparisons, which showed no

systematic ΔFD/SSIM clustering and no association between FD

differences and structural similarity. Furthermore, similar to the

MASSIVE data, structural similarity across all image groups was signifi-

cantly different between first volume and MNI registration, while

there was essentially no difference in ΔFD. In this context, a closer

examination of the numerical SSIM values in the MASSIVE and the

MSC data reveals a subtle but interesting corollary of our analyses:

while reregistration in the MASSIVE data set invariably caused a mar-

ked increase in the SSIM values to above 0.9 in all analysis groups,

reregistration in the MSC data caused a decrease in SSIM in all but two

analysis groups to values around 0.7–0.8 (see Tables A1 and A2 in

Appendix). Bearing in mind that the MASSIVE data were reregistered

to the mean FLAIR image (derived from the same subject) while the

MSC data were reregistered to the MNI template (i.e., not derived

from the same subjects), these findings suggest that subject-specific

common image registration increased between-scan structural sim-

ilarity while subject-independent common registration decreased

between-scan similarity. Notably, however, differences in FD did not

simply track differences in structural similarity in either case, i.e.,

regardless of whether scans were more or less similar to each other,

and this applied to both within- and across-subject analyses. In sum-

mary, the present results suggest that there is no general relationship

between structural complexity as measured by the FD and structural

similarity as captured by the SSIM and that, rather, they may repre-

sent two distinct aspects of structural brain MRI.

4.1 | Future directions

In the current study, we obtain several FD values for every input vol-

ume due to the stratification of processing parameters (tissue type,

segmentation procedure, skeletonization). Thus, instead of just map-

ping one FD to one image, we compute a fractal “profile” of eight FD

estimates per input image. Since the different analysis groups seem to

entail differential susceptibility to deviations, such a fractal profile

could perhaps be useful to optimize diagnostic sensitivity-specificity

trade-offs. Furthermore, we here employed monofractal analysis, and

it may be useful to expand this to multifractal approaches. Indeed, a

recent study by Xue and Bogdan (2017) presents reliable multifractal

estimation algorithms for quantifying structural complexity and their

application for community detection in structural brain networks.

These authors also consider scale-related biases of the estimation pro-

cedure, albeit in weighted complex networks. Similarly, a formal

framework for pattern characterization by multifractal analysis has

recently been put forward by Balaban, Lim, Gupta, Boedicker, and

Bogdan (2018). Moreover, we here compute FD estimates on global

tissue segmentations. Given the increasingly sophisticated brain

parcellation methods, however, region- and substructure-specific frac-

tal analysis is also being developed and is likely to yield interesting

additional information, especially in the clinical context (see Eickhoff,

Yeo, & Genon, 2018; Glasser et al., 2016; Goñi et al., 2013; Madan,

2018b; Madan & Kensinger, 2017; Ruiz de Miras et al., 2017). As

such, future work is warranted to expand upon the utility of fractal
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analysis for empirical neuroimaging, specifically with respect to clinical

applications. As detailed above, fractal analysis has shown the poten-

tial to detect brain tissue alterations in a wide range of vascular,

inflammatory, neoplastic, and neurodegenerative pathologies—even in

the absence of radiologically visible lesions. These findings raise hopes

of defining novel biomarkers for improved diagnostics and enhancing

our understanding of disease-induced brain changes, for instance by

identifying previously unrecognized tissue alterations. To reach this

goal, however, the diagnostic and prognostic capacity of fractal analy-

sis needs further investigation, both on a population and on the indi-

vidual subject level. With the present work, we hope to contribute

some methodological groundwork to facilitate progress in this

direction.
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